SA. Электрический ток
Электрический ток
- Электрическим током называется направленное (упорядоченное) движение заряженных частиц.
Электрический ток в проводниках представляет собой:
в металлах — направленное движение электронов (проводники первого рода);
в электролитах — направленное движение положительных и отрицательных ионов (проводники второго рода);
в плазме — направленное движение электронов и ионов обоих знаков (проводники третьего рода).
За направление электрического тока условились считать направление движения положительно заряженных частиц.
Движение заряженных частиц внутри проводника нельзя наблюдать, но судить о наличии электрического тока можно по его действиям:
- тепловому — проводник с током нагревается;
- магнитному — вокруг проводника с током возникает магнитное поле;
- световому — проводник с током может светиться;
- химическому — в проводнике с током изменяется химический состав (такие проводники называются проводниками второго класса).
Для продолжительного существования электрического тока в замкнутой цепи необходимо выполнение следующих условий:
- наличие свободных заряженных частиц (носителей тока);
- наличие электрического поля, силы которого, действуя на заряженные частицы, заставляют их двигаться упорядоченно;
- наличие источника тока, внутри которого сторонние силы перемещают свободные заряды против электростатических (кулоновских) сил.
Количественными характеристиками электрического тока являются сила тока I и плотность тока j.
- Сила тока — скалярная физическая величина, равная отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку:
Единицей силы тока в СИ является ампер (А).
Если сила тока и его направление со временем не изменяются, то ток называется постоянным.
- Плотность тока j — это векторная физическая величина, модуль которой равен отношению силы тока I в проводнике к площади S поперечного сечения проводника:
В СИ единицей плотности тока является ампер на квадратный метр (А/м2).
*Зависимость силы тока от скорости зарядов
Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.
Выделим участок проводника площадью сечения S и длиной Δl (рис. 1). Заряд каждой частицы q0. В объеме проводника, ограниченном сечениями 1 и 2, содержится n∙S∙Δl частиц, где n — концентрация частиц. Их общий заряд \(~\Delta q = q_0 \cdot n \cdot S \cdot \Delta l\).
Если средняя скорость упорядоченного движения свободных зарядов \(~\left\langle \upsilon \right\rangle\), то за промежуток времени \(~\Delta t = \dfrac{\Delta l}{\left\langle \upsilon \right\rangle}\) все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:
Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.
Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов \(~\left\langle \upsilon \right\rangle\) при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.
Как следует из формулы (1), плотность тока \(~\vec j = q_0 \cdot n \cdot \left\langle \vec \upsilon \right\rangle\).
- Направление вектора плотности тока \(~\vec j\) совпадает с направлением вектора скорости упорядоченного движения \(~\left\langle \vec \upsilon \right\rangle\) положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.
Источник тока
Для поддержания в цепи электрического тока необходимо, чтобы на концах ее (рис. 2) существовала постоянная разность потенциалов φ1 – φ2. Пусть в начальный момент времени φ1 > φ2, тогда перенос положительного заряда q от клеммы источника «+» к клемме «–» приведет к уменьшению разности потенциалов между ними . Для сохранения постоянной разности потенциалов необходимо перенести точно такой же заряд от клеммы «–» к клемме «+». Если в направлении от «+» к «–» положительные заряды движутся под действием сил кулоновских сил Fk, то в направлении от «–» к «+» перемещение зарядов происходит против направления действия кулоновских сил, т.е. под действием другой силы Fст, которая называется сторонней силой.
- Сторонние силы — это любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил.
Сторонние силы возникают в источнике тока.
- Источник тока — это устройство, способное поддерживать разность потенциалов между концами электрической цепи и обеспечивать упорядоченное движение электрических зарядов во внешней цепи.
Источники электрического тока могут быть различны по своей конструкции, но в любом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделение зарядов происходит под действием сторонних сил. Перечислим наиболее распространенные источники тока:
- гальванические элементы (батарейки) (рис. 3, а) и аккумуляторы — сторонние силы используют энергию химических реакций;
- генераторы (динамо-машины) — сторонние силы используют механическую энергию падающей воды, ветра, пара и т.п.;
- фотоэлементы (солнечные батареи) (рис. 3, б) — сторонние силы используют энергию электромагнитных излучений (света).
Источник электрического тока имеет два полюса (две клеммы), к которым присоединяются концы проводов.
Проводник, соединяющий клеммы источника снаружи, называют внешним участком цепи. Сопротивление этого источника обозначают R и называют внешним сопротивлением.
Внутри самого источника заряды движутся по внутреннему участку цепи. Сопротивление источника обозначают r и называют внутренним сопротивлением.
Сумма внешнего и внутреннего соспротивлений (R + r) называют полным сопротивлением цепи.
На электрических схемах источник тока обозначается так, как показано на рис. 4. Положительный полюс (клемма) источника условно изображается более длинной чертой, чем отрицательный.
Любой источник тока характеризуют электродвижущей силой — ЭДС.
- ЭДС (Электродвижущей силой) ε источника тока называют физическую скалярную величину, численно равную работе сторонних сил Ast по перемещению единичного положительного заряда внутри источника тока:
Единицей электродвижущей силы в СИ является вольт (В).
ЭДС является энергетической характеристикой источника тока.
- Термин «электродвигающая сила» был введен Ампером в 1822 г. Аббревиатуру ЭДС принято читать без расшифровки.
См. также
Все о химических источниках тока
Закон Ома для замкнутой цепи
Рассмотрим простейшую полную электрическую цепь, содержащую источник ЭДС ε с внутренним сопротивлением r подключенный к ним резистор сопротивлением R (рис. 5).
Тогда
- Данная формула представляет собой закон Ома для полной цепи:
- Сила тока в полной цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи.
Заметим, что максимально возможный ток в цепи с данным источником тока возникает в том случае, если сопротивление внешней цепи стремится к нулю.
Подключение к полюсам источника тока проводника с ничтожно малым сопротивлением называется коротким замыканием, а максимальную для данного источника силу тока называют током короткого замыкания:
У источников с малым значением r (например, у свинцовых аккумуляторов r = 0,1 - 0,01 Ом) сила тока короткого замыкания очень велика. Особенно опасно короткое замыкание в осветительных сетях, питаемых от подстанций (ε > 100 В), Ikz может достигнуть тысячи ампер. Чтобы избежать пожаров, в такие цепи включают предохранители.
*Вывод закона Ома
Рассмотрим простейшую полную электрическую цепь, содержащую источник ЭДС ε с внутренним сопротивлением r подключенный к ним резистор сопротивлением R (см. рис. 5).
Из определений силы тока и ЭДС источника тока следует, что совершаемая источником работа
При прохождении тока проводники нагреваются, при этом выделяется энергия как во внешней цепи Q1, так и во внутренней цепи Q2. Тогда количество теплоты Q, выделившаяся во всей полной цепи, равна сумме этих энергий. По закону Джоуля-Ленца
Из закона сохранения энергии получаем, что в такой цепи работа сторонних сил за промежуток времени Δt равна выделившемуся в цепи количеству теплоты:
КПД источника тока
Для замкнутой цепи, мощность Pp, выделяемая на внешнем участке цепи, называется полезной мощностью. Она равна
С учетом закона Ома для участка цепи \(~I = \dfrac{U}{R}\) полезную мощность можно найти, если известны любые две величины из трех: I, U, R.
Для замкнутой цепи, мощность Pt, выделяемая на внутреннем сопротивлении источника, называется теряемой мощностью. Она равна
Полная мощность P источника тока равна
КПД источника тока
Литература
- Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 252-253, 259-260, 262-264, 267-269.
- Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. — 2-е изд., исправленное. — Минск: Нар. асвета, 2008. — С. 118-123, 132-141.