SA. Ток в газах
В обычных условиях газы являются диэлектриками, т.к. состоят из нейтральных атомов и молекул, и в них нет достаточного количества свободных зарядов.
Ионизация и рекомбинация
Газы становятся проводниками лишь тогда, когда они каким-то образом ионизированы. Процесс ионизации газов заключается в том, что под действием каких-либо причин от атома отрывается один или несколько электронов. В результате этого вместо нейтрального атома возникают положительный ион и электрон.
- Распад молекул на ионы и электроны называется ионизацией газа.
Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появляются отрицательно заряженные ионы.
Таким образом, в ионизованном газе имеются носители зарядов трех сортов: электроны, положительные ионы и отрицательные.
Отрыв электрона от атома требует затрат определенной энергии — энергии ионизации Wi. Энергия ионизации зависит от химической природы газа и энергетического состояния электрона в атоме. Так, для отрыва первого электрона от атома азота затрачивается энергия 14,5 эВ, а для отрыва второго электрона — 29,5 эВ, для отрыва третьего — 47,4 эВ.
Факторы, вызывающие ионизацию газа называются ионизаторами.
Различают три вида ионизации: термоионизацию, фотоионизацию и ударную ионизацию.
- Термоионизация происходит в результате столкновения атомов или молекул газа при высокой температуре, если кинетическая энергия относительного движения сталкивающихся частиц превышает энергию связи электрона в атоме.
- Фотоионизация происходит под действием электромагнитного излучения (ультрафиолетового, рентгеновского или γ-излучения), когда энергия, необходимая для отрыва электрона от атома, передается ему квантом излучения.
- Ионизация электронным ударом (или ударная ионизация) — это образование положительно заряженных ионов в результате столкновений атомов или молекул с быстрыми, обладающими большой кинетической энергией, электронами.
Процесс ионизации газа всегда сопровождается противоположным процессом восстановления нейтральных молекул из разноименно заряженных ионов вследствие их электрического притяжения. Это явление называется рекомбинацией. При рекомбинации выделяется энергия, равная энергии, затраченной на ионизацию. Это может вызвать, например, свечение газа.
Если действие ионизатора неизменно, то в ионизованном газе устанавливается динамическое равновесие, при котором в единицу времени восстанавливается столько же молекул, сколько их распадается на ионы. При этом концентрация заряженных частиц в ионизованном газе остается неизменной. Если же прекратить действие ионизатора, то рекомбинация начнет преобладать над ионизацией и число ионов быстро уменьшится почти до нуля. Следовательно, наличие заряженных частиц в газе — явление временное (пока действует ионизатор).
При отсутствии внешнего поля заряженные частицы движутся хаотически.
Газовый разряд
При помещении ионизированного газа в электрическое поле на свободные заряды начинают действовать электрические силы, и они дрейфуют параллельно линиям напряженности: электроны и отрицательные ионы — к аноду, положительные ионы — к катоду (рис. 1). На электродах ионы превращаются в нейтральные атомы, отдавая или принимая электроны, тем самым замыкая цепь. В газе возникает электрический ток.
- Электрический ток в газах — это направленное движение ионов и электронов.
Электрический ток в газах называется газовым разрядом.
Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к катоду, и потока, направленного к аноду.
В газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов или расплавов электролитов.
Таким образом, проводимость газов имеет ионно-электронный характер.
Несамостоятельный разряд
Рассмотренный выше механизм прохождения электрического тока через газы при постоянном воздействии на газ внешнего ионизатора представляет собой несамостоятельный разряд, так как при прекращении действия ионизатора прекращается и ток в газе.
- Несамостоятельный разряд - это разряд, который зависит от наличия ионизатора.
Исследуем зависимость силы тока от напряжения при несамостоятельном разряде в газе. Для этой цели удобно использовать стеклянную трубку с двумя впаянными в стекло металлическими электродами. Соберем цепь по схеме, изображенной на рисунке 2.
Пусть с помощью какого-нибудь ионизатора, например за счет воздействия рентгеновских лучей, в газе образуется ежесекундно определенное число пар заряженных частиц: электронов и положительных ионов.
При отсутствии напряжения на электродах (U = 0) гальванометр, включенный в цепь (см. рис. 2), покажет нуль (I = 0). При небольшой разности потенциалов между электродами трубки положительно заряженные ионы начнут перемещаться к отрицательному электроду (катоду), а электроны и отрицательно заряженные ионы — к аноду, т. е. возникнет газовый разряд.
Однако вследствие рекомбинации не все образующиеся под действием ионизатора ионы доходят до электродов. Часть их, рекомбинируя, образует нейтральные молекулы. По мере увеличения разности потенциалов между электродами трубки доля заряженных частиц, достигающих электродов, увеличивается, т. е. сила тока в цепи возрастает (рис. 3). Объясняется это тем, что при большем напряжении между электродами ионы движутся с большей скоростью, поэтому им остается все меньше времени для воссоединения в нейтральные молекулы.
Наконец, при некотором определенном напряжении наступает такой момент, при котором все заряженные частицы, образующиеся в газе ионизатором за секунду, достигают за это же время электродов. Дальнейшее увеличение напряжения уже не может привести к увеличению числа переносимых ионов. Ток, как говорят, достигает насыщения (см. рис. 3, горизонтальный участок графика).
Таким образом, вольт-амперная характеристика при несамостоятельном разряде в газах является нелинейной, т. е. закон Ома для газов выполняется только при малых напряжениях.
Самостоятельный разряд
Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать (рис. 4). Это означает, что в газе появляются дополнительные ионы сверх тех, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор можно теперь убрать. Поскольку разряд не нуждается для своего поддержания во внешнем ионизаторе, его называют самостоятельным разрядом.
Напряжение U = Uпр, при котором несамостоятельный электрический разряд переходит в самостоятельный, называют напряжением пробоя газа, а сам процесс такого перехода — электрическим пробоем газа.
Электрон, ускоряясь электрическим полем, на своем пути к аноду сталкивается с ионами и нейтральными молекулами. В промежутках между двумя последовательными столкновениями энергия электрона увеличивается за счет работы сил электрического поля. Чем больше разность потенциалов между электродами, тем больше напряженность электрического поля.
Если кинетическая энергия электрона превосходит работу Wi, которую нужно совершить, чтобы ионизовать нейтральный атом (или молекулу), то при столкновении электрона с атомом (или молекулой) происходит его (ее) ионизация, называемая ионизацией электронным ударом.
В результате столкновения электрона с атомом образуется еще один электрон и положительный ион. Таким образом, вместо одной заряженной частицы появляются три — ион и два электрона. Эти электроны, в свою очередь, получают энергию в поле и ионизуют новые атомы и т. д. Вследствие этого число заряженных частиц очень быстро возрастает. Описанный процесс имеет сходство с образованием снежной лавины в горах и поэтому получил название электронной (или ионной) лавины.
Лавинообразное нарастание числа заряженных частиц в газе может начаться под действием сильного электрического поля, если в газе окажется хотя бы один электрон. Ионизатор в этом случае не нужен. Так, например, в окружающем нас воздухе всегда имеется некоторое число ионов и электронов, возникающих под действием радиоактивных излучений земной коры, ультрафиолетового и рентгеновского излучений Солнца, а также других излучений, проникающих в земную атмосферу из космического пространства.
Обратим внимание на то, что роль электронов и ионов в образовании лавинного разряда в газах неодинакова. Основную роль в ударной ионизации играют свободные электроны.
Но ионизация только электронным ударом не может обеспечить длительный самостоятельный разряд. Действительно, ведь все возникающие таким образом электроны движутся по направлению к аноду и по достижении анода «выбывают из игры». Для поддержания разряда необходима эмиссия электронов с катода («эмиссия» означает «испускание»). Эмиссия электронов может быть обусловлена несколькими причинами.
Положительные ионы, образовавшиеся при столкновении электронов с нейтральными атомами, при своем движении к катоду приобретают под действием поля большую кинетическую энергию. При ударах таких быстрых ионов о катод с поверхности катода выбиваются электроны.
Катод может испускать электроны при нагревании до высокой температуры. Этот процесс называется термоэлектронной эмиссией. Его можно рассматривать как испарение электронов из металла. Во многих твердых веществах термоэлектронная эмиссия происходит при температурах, при которых испарение самого вещества еще мало. Такие вещества и используют для изготовления катодов.
При самостоятельном разряде нагрев катода может происходить за счет бомбардировки его положительными ионами. Если энергия ионов не слишком велика, то выбивания электронов с катода не происходит и электроны испускаются вследствие термоэлектронной эмиссии.
В газах при больших напряженностях электрических полей электроны достигают таких больших энергий, что начинается ионизация электронным ударом. Разряд становится самостоятельным и продолжается без внешнего ионизатора.
Виды самостоятельного разряда
В зависимости от давления газа, напряжения, приложенного к электродам, формы и характера расположения электродов различают следующие типы самостоятельного разряда: тлеющий, коронный, дуговой и искровой.
- Тлеющий разряд наблюдается при пониженных давлениях газа (порядка 0,1 мм рт. ст.). Для возбуждения такого разряда достаточно напряжения между электродами в несколько сотен (а иногда и значительно меньше) вольт. Тлеющий разряд используют в газоразрядных трубках для освещения и рекламы. Красное свечение возникает при наполнении трубки неоном. Положительный столб в аргоне имеет синевато-зеленоватый цвет. В лампах дневного света используют разряд в парах ртути.
- Искровой разряд можно получить, если постепенно увеличивать напряжение между двумя электродами. При некотором напряжении возникает электрическая искра. Примером гигантского искрового разряда является молния. Она возникает либо между двумя заряженными облаками, либо между заряженным облаком и Землей. Сила тока в молнии достигает 500000 ампер, а разность потенциалов между облаком и Землей — 1 млрд. вольт. Длина светящегося канала может достигать 10 км, а его диаметр — 4 м.
- Если после зажигания искрового разряда постепенно уменьшать сопротивление цепи, то сила тока в искре будет увеличиваться, и возникнет новая форма газового разряда, называемого дуговым. В настоящее время электрическую дугу, горящую при атмосферном давлении, чаще всего получают между специальными угольными электродами. Ее температура при атмосферном давлении около 4000 °С. Электрическая дуга является мощным источником света и широко применяется в проекционных, прожекторных и других осветительных установках. Вследствие высокой температуры дуга широко применяется для сварки и резки металлов. Высокую температуру дуги используют также при устройстве дуговых электрических печей, играющих важную роль в современной электрометаллургии.
- Коронный разряд наблюдается при сравнительно высоких давлениях газа (например, при атмосферном давлении) в резко неоднородном электрическом поле. Так, например, коронный разряд можно получить около тонкой проволоки. При этом возле нее наблюдается свечение, имеющее вид оболочки или короны, окружающей проволоку, откуда и произошло название разряда. Коронный разряд используется в технике для устройства электрофильтров, предназначенных для очистки промышленных газов от твердых и жидких примесей. В природе коронный разряд возникает иногда под действием атмосферного электрического поля на ветках деревьев, верхушках мачт (так называемые огни святого Эльма). Коронный разряд может возникнуть на тонких проводах, находящихся под напряжением.
Понятие о плазме
- Плазма — это частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Поэтому в целом плазма является электрически нейтральной системой.
Степень ионизации плазмы α определяется отношением числа ионизированных атомов к их общему числу\[~\alpha = \frac{N_i}{N}\]. В зависимости от степени ионизации плазма подразделяется на слабо ионизированную (α — доли процента), частично ионизированную (α — несколько процентов) и полностью ионизированную (α = 100%). Слабо ионизированной плазмой является ионосфера — верхний слой земной атмосферы. В состоянии полностью ионизированной плазмы находится Солнце, горячие звезды. Солнце и звезды представляют собой гигантские сгустки горячей плазмы, где температура очень высокая, порядка 106 - 107 К. Искусственно созданной плазмой различной степени ионизации является плазма в газовых разрядах, газоразрядных лампах.
Существование плазмы связано либо с нагреванием газа, либо с излучением различного рода, либо с бомбардировкой газа быстрыми заряженными частицами.
Ряд свойств плазмы позволяет рассматривать ее как особое состояние вещества. Плазма — самое распространенное состояние вещества. Плазма существует не только в качестве вещества звезд и Солнца, она заполняет и космическое пространство между звездами и галактиками. Верхний слой атмосферы Земли также представляет собой слабо ионизированную плазму.
Управление движением плазмы в электрических и магнитных полях является основой ее использования как рабочего тела в различных двигателях для непосредственного превращения внутренней энергии в электрическую — плазменные источники электроэнергии, магнитогидродинамические генераторы. Для космических кораблей перспективно использование маломощных плазменных двигателей. Мощная струя плотной плазмы, получаемая в плазмотроне, широко используется для резки и сварки металлов, бурения скважин, ускорения многих химических реакций. Проводятся широкомасштабные исследования по применению высокотемпературной плазмы для создания управляемых термоядерных реакций.
Литература
- Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 287-292.
- Буров Л.И., Стрельченя В.Μ. Физика от А до Я: учащимся, абитуриентам, репетиторам. — Мн.: Парадокс, 2000. — С. 232-239.
- Мякишев Г. Я. Физика: Электродинамика. 10 – 11 кл.: учебник для углубленного изучения физики/ Г.Я. Мякишев, А.З. Синяков, Б.А. Слободсков. — М.: Дрофа, 2005. — С. 276-284.