Kvant. Ядерные спектры
Кабардин О.Ф. Ядерные спектры //Квант. — 1987. — № 3. — С. 42-43.
По специальной договоренности с редколлегией и редакцией журнала "Квант"
Как вы знаете, атомные ядра состоят из нуклонов — протонов и нейтронов, между которыми действуют ядерные силы притяжения и кулоновские силы отталкивания. Что может произойти с ядром при его столкновении с другим ядром, частицей или гамма-квантом? Опыты Э. Резерфорда, выполненные в 1919 году, показали, например, что под воздействием альфа-частицы из ядра может быть выбит протон. В экспериментах, проведенных Д. Чедвиком в 1932 году, было установлено, что альфа-частицы могут выбивать из атомных ядер и нейтроны («Физика 10», § 106). Но всегда ли так заканчивается процесс столкновения? Не может ли атомное ядро поглотить энергию, полученную при столкновении, и перераспределить ее между входящими в его состав нуклонами, изменив тем самым свою внутреннюю энергию? Что будет происходить с таким ядром дальше?
Ответы на эти вопросы дали прямые опыты по изучению взаимодействия протонов с атомными ядрами. Их результаты очень похожи на результаты опытов Франка и Герца по изучению столкновений электронов с атомами («Физика 10», § 96). Оказывается, при постепенном увеличении энергии протонов сначала наблюдаются только упругие столкновения с атомными ядрами, кинетическая энергия не превращается в другие виды энергии, а лишь перераспределяется между протоном и атомным ядром как одной частицей. Однако, начиная с некоторого значения энергии протона, могут происходить и неупругие столкновения, при которых протон, поглощается ядром и полностью передает ему свою энергию. Ядро каждого изотопа характеризуется строго определенным набором «порций» энергии, которые оно может принять.
Эти опыты доказывают, что ядра обладают дискретными спектрами возможных энергетических состояний. Таким образом, квантование энергии и ряда других параметров является свойством не только атомов, но и атомных ядер. Состояние атомного ядра с минимальным запасом энергии называется основным, или нормальным, состояния с избыточной энергией (по сравнению с основным состоянием) называются возбужденными.
Атомы обычно находятся в возбужденных состояниях примерно 10-8 секунды, а возбужденные атомные ядра избавляются от избытка энергии за гораздо более короткое время — порядка 10-15 - 10-16 секунды. Как и атомы, возбужденные ядра освобождаются от избытка энергии, испуская кванты электромагнитного излучения. Эти кванты называются гамма-квантами (или гамма-лучами). Дискретному набору энергетических состояний атомного ядра соответствует дискретный спектр частот излучаемых ими гамма-квантов. Гамма-лучи представляют собой поперечные электромагнитные волны, такие же, как радиоволны, видимый свет или рентгеновские лучи. Они являются самым коротковолновым видом электромагнитного излучения из всех известных, и соответствующие им длины волн лежат в диапазоне примерно от 10-11 м до 10-13 м.
Энергетические состояния атомных ядер и переходы ядер из одного состояния в другое с поглощением или излучением энергии принято описывать с помощью энергетических диаграмм, аналогичных энергетическим диаграммам атомов («Физика 10», § 94). На рисунке представлена энергетическая диаграмма ядра изотопа железа — \(~^{58}_{26}Fe\), полученная на основе опытов по бомбардировке протонами. Заметим, что при качественном сходстве энергетических диаграмм атомов и ядер между ними есть существенные количественные различия. Если для перевода атома из основного состояния в возбужденное требуется энергия в несколько электронвольт, то для возбуждения атомного ядра необходима энергия порядка сотен тысяч или миллионов электронвольт. Это различие обусловлено тем, что ядерные силы, действующие между нуклонами в ядре, в значительной степени превосходят силы кулоновского взаимодействия электронов с ядром.
Способность атомных ядер самопроизвольно переходить из состояний с большим запасом энергии в состояние с меньшей энергией объясняет происхождение не только гамма-излучения, но и радиоактивного распада ядер.
Многие закономерности в ядерных спектрах можно объяснить, если воспользоваться так называемой оболочечной моделью строения атомного ядра. Согласно этой модели, нуклоны в ядре не перемешаны в беспорядке, а, подобно электронам в атоме, располагаются связанными группами, заполняя разрешенные ядерные оболочки. При этом протонные и нейтронные оболочки заполняются независимо друг от друга. Максимальные числа нейтронов: 2, 8, 20, 28, 40, 50, 82, 126 и протонов: 2, 8, 20, 28, 50, 82 в заполненных оболочках получили название магических. Ядра с магическими числами протонов и нейтронов обладают многими замечательными свойствами: повышенным значением удельной энергии связи, меньшей вероятностью вступления в ядерное взаимодействие, устойчивостью по отношению к радиоактивному распаду и т. п.
Переход ядра из основного состояния в возбужденное и возвращение его в основное состояние, с точки зрения оболочечной модели, объясняется переходом нуклона с одной оболочки на другую и обратно.
При большом числе достоинств оболочечная модель ядра не способна объяснить свойства всех ядер в различных типах взаимодействий. Во многих случаях более плодотворным оказывается представление о ядре как о капле ядерной жидкости, в которой нуклоны связаны ядерными силами, кулоновскими силами и силами поверхностного натяжения[1]. Существуют и другие модели, но ни одна из предложенных до сих пор не может считаться универсальной.
Примечания
- ↑ Более подробно о капельной модели ядра можно прочитать в соответствующей заметке. (Примеч. ред.)