Kvant. Электрический диполь
Варламов А.А. Электрический диполь и его электрический момент //Квант. — 1985. — № 11. — С. 21-23.
По специальной договоренности с редколлегией и редакцией журнала "Квант"
В большинстве своем нас окружают электрически нейтральные тела. Однако утверждать, что они не принимают никакого участия в электрических взаимодействиях, было бы неправильно. Достаточно вспомнить, например, что два заряда, помещенные в какой-нибудь диэлектрик, взаимодействуют слабее, чем в вакууме. Причиной тому — молекулы диэлектрика. Хотя диэлектрик состоит из нейтральных молекул, они способны создать собственное электрическое поле, которое и ослабляет электрическое взаимодействие зарядов.
Рассмотрим простейший пример электрически нейтральной системы — электрический диполь. Так называют совокупность двух равных по модулю, но противоположных по знаку точечных электрических зарядов ±q, находящихся на некотором расстоянии l друг от друга (рис. 1).
Поле диполя
Электрическое поле диполя можно найти в любой интересующей нас точке, опираясь на принцип суперпозиции («Физика 9», § 42). Сделаем это, например, для точки А (рис. 2).
Напряженность поля в этой точке равна векторной сумме напряженностей, создаваемых точечными зарядами +q и —q:
или
где r — расстояние от середины диполя до точки А.
На больших расстояниях, когда r >> l получаем
где р = ql называется электрическим моментом диполя. Говоря точнее, ql — это модуль дипольного электрического момента \(~\vec p\), а направлен этот вектор от отрицательного заряда к положительному. Электрический момент — основная характеристика диполя. В данном случае он определяет электрическое поле диполя на больших расстояниях от него.
Как видно из последнего выражения, вдали от диполя напряженность поля убывает с расстоянием как \(~\frac{1}{r^3}\), то есть быстрее, чем поле точечного заряда (пропорциональное \(~\frac{1}{r^2}\)). Это справедливо не только для точек, которые лежат на линии, проходящей через заряды +q и —q, но и для любых других точек, достаточно удаленных от диполя.
Диполь в электрическом поле
Посмотрим, как ведет себя диполь, попав во внешнее электрическое поле. Сначала — в однородное поле с напряженностью \(~\vec E\) (рис. 3).
На заряды диполя действуют равные по модулю, но противоположные по направлению силы \(~+q \vec E\) и \(~-q \vec E\), которые стремятся развернуть диполь. Относительно оси, проходящей через центр диполя (точку О) и перпендикулярной плоскости чертежа, каждая сила создает вращающий момент, равный произведению модуля силы на соответствующее плечо (см. рис. 3)\[~qE \cdot \frac{l}{2} \sin \alpha\].
Суммарный вращающий момент будет равен
Таким образом, при заданных значениях Е и α вращающий момент М определяется величиной дипольного момента р.
Под действием вращающего момента диполь будет поворачиваться, пока не займет положение, изображенное на рисунке 3 штриховой линией. В этом положении равны нулю как сумма сил, так и сумма моментов сил, действующих на диполь. Это означает, что диполь находится в равновесии. При этом вектор электрического момента диполя сонаправлен с вектором напряженности поля.
Следовательно, в однородном внешнем электрическом поле диполь поворачивается и располагается так, чтобы его дипольный момент был ориентирован по полю. Заметим, что такое положение является положением его устойчивого равновесия.
Пусть теперь диполь находится в неоднородном внешнем поле. Разумеется, и здесь возникает вращающий момент, разворачивающий диполь вдоль поля (рис. 4). Но в этом случае на заряды действуют неодинаковые но модулю силы, равнодействующая которых отлична от нуля. Поэтому диполь будет еще и перемещаться поступательно, втягиваясь в область более сильного поля (убедитесь в этом самостоятельно).
Диполи в природе
Молекулы многих веществ похожи на электрические диполи — равные по модулю положительные и отрицательные заряды в них разделены в пространстве. Примерами таких дипольных молекул могут служить, скажем, молекулы соляной кислоты НСl, состоящие из положительных ионов водорода (Н+) и отрицательных ионов хлора (Сl-). Молекулы самого распространенного на земле вещества — воды Н2О состоят из двух положительных ионов водорода и одного отрицательного иона кислорода (рис. 5). Хотя это системы не двух, а трех зарядов, но ведут себя они как электрические диполи — центр положительного заряда находится на некотором расстоянии от центра отрицательного заряда, а суммарный положительный заряд равен но модулю суммарному отрицательному заряду.
Есть также вещества, у которых молекулы в обычных условиях диполями не являются, поскольку центры положительных и отрицательных зарядов в них совпадают. Но во внешнем электрическом поле заряды противоположных знаков несколько смещаются относительно друг друга и молекулы становятся электрическими диполями.
Заметим, что именно благодаря существованию диполей происходит такое важное физическое явление, как поляризация диэлектриков («Физика 9», § 47). Интересно, что весь поляризованный диэлектрик ведет себя подобно диполю. Движение такого «диполя» в неоднородном электрическом поле было исторически первым замеченным людьми электрическим явлением (вспомните притяжение наэлектризованным телом легких предметов).