Kvant. Ток в металле
Варламов А. Как в металле протекает электрический ток? // Квант. – 1995. – № 1. – С. 37-38.
По специальной договоренности с редколлегией и редакцией журнала "Квант"
Этот вопрос обычно не вызывает затруднений у школьников. Как протекает? Да очень просто. Если между концам проводника, например металлического, поддерживать разность потенциалов, то в нем возникает электрическое поле. Действуя на имеющиеся в металле свободные электроны, это поле придает им ускорение в направлении того конца проводчика, потенциал которого выше (заряд электронов отрицательный). Возникает направленное движение зарядов, которое и является электрическим током.
Нельзя сказать, что такой ответ ошибочен. Все слова в нем верны. Однако этот, на первый взгляд исчерпывающий ответ сразу же вызывает целый ряд других вопросов и возражений. Попробуем и них разобраться.
Как движутся электроны при создании между концами проводника разности потенциалов? Казалось бы, ускоренно, ведь на них все время действует сила \( \vec F = e \cdot \vec E\) (\( \vec E\) – напряженность электрического поля в проводнике). Но, с другой стороны, если бы это действительно было так, то сила тока в любом сечении проводника со временем возрастала бы, что противоречит закону Ома – при постоянном напряжении сила тока, протекающего по проводнику, постоянна\[I = \dfrac {U}{R}\] . Как же быть? Вспомним о внутреннем устройстве металла.
Валентные электроны атомов металлов связаны с атомами весьма слабо. Поэтому при образовании кристаллической решетки они легко отрываются от атомов к образуют довольно плотный электронный газ (даже если от каждого атома оторвется лишь по одному электрону, то их концентрация в таком газе окажется порядка n ~ 1029 м3, в чем вы можете убедиться самостоятельно). Рассуждая выше о протекании тока через металл, мы считали эти электроны свободными. В определенном смысле это верно, но не следует забывать и об их окружении – ионной кристаллической решетке.
Созданная в конце XIX – начале XX веков классическая электронная теория сопротивления металлов предполагала, что в процессе движения под действием электрического поля электроны сталкиваются с ионами кристаллической решетки. Среди этих столкновения бывают и такие, при которых электроны всю приобретенную при разгоне в электрическом поле энергию передают решетке. Именно такие столкновения, их называют эффективными, и ответственны за сопротивление металла. Остальные столкновения для понимания механизма протекания тока можно не принимать в расчет (после них изменяется лишь направление скорости электронов, но не ее величина).
Пусть среднее время между соударениями есть τ. Тогда можно представить себе следующую модель движения электрона в металле, в котором создано электрическое поле. В интервале времени от 0 до τ электрон движется с ускорением \( \vec a = \dfrac {e \cdot \vec E}{m}\), и, следовательно, проекция скорости его направленного движения против поля \( \vec E\) линейно возрастает со временем\[ \upsilon = a \cdot t = \dfrac {e \cdot E \cdot t}{m}\]. В момент времени τ электрон сталкивается с ионом и полностью передает кинетическую энергию своего направленного движения решетке. Далее он снова ускоряется электрическим полем, и процесс повторяется. График зависимости проекции скорости упорядоченного движения от времени приведен на рисунке 1.
Такое кусочно-равноускоренное движение можно представить себе как равномерный дрейф электрона в направлении, противоположном полю, со скоростью \( \upsilon_{cp} = \dfrac {e \cdot E \cdot \tau}{2m}\). Вычислим связанную с этим движением силу тока.
Число электронов, проходящих через сечение S проводника за время Δt, есть \( \Delta N = n \cdot S \cdot \upsilon_{cp} \cdot \Delta t\). При этом перекосится заряд \( \Delta q = e \cdot \Delta N = n \cdot e \cdot S \cdot \upsilon_{cp} \cdot \Delta t\). Следовательно, в проводнике протекает ток
Величина \( j = \dfrac {I}{S} = \dfrac {n \cdot e^2 \cdot \tau}{2m}\cdot E\). называется плотностью тока.
Оказывается, полученный нами коэффициент при напряженности поля Е, который составлен только из микроскопических характеристик металла, есть не что иное, как величина, обратная удельному сопротивлению металла ρ.
Ну вот, кое-что стало проясняться. Однако вопросы еще остались. Давайте, например, оценим среднюю скорость направленного движения электронов. Пусть по медному проводнику сечением, скажем 10 мм2 и концентрацией электронов n = 1,67∙1029 м-3 протекает ток I = 10 А. Тогда средняя скорость
Если же по известному из эксперимента значению ρ определить время между эффективными соударениями, то окажется, что τ ~ 10-14 с. Поэтому, если предполагать, что пробег между эффективными соударениями происходит со средней скоростью υcp ~ 0,1 мм/с, то мы приходим к абсурдному утверждению: расстояние между двумя соударениями электрона составляет \(l = \upsilon_{cp} \cdot \tau \sim \) 10-18 м, что на много порядков меньше расстояния: между ближайшими нонами в решетке. Следовательно, мы снова чего-то не учли.
А не учли мы того, что частицы электронного газа в металле, подобно молекулам идеального газа в сосуде, находятся в постоянном хаотическом движении. Однако, если воспользоваться такой аналогией и вместо υcp подставить в выражение для l тепловую скорость \(\upsilon_{t} = \sqrt{\dfrac{3k \cdot T}{m}}\), то этого все равно окажется недостаточно для согласия с опытными данными (убедитесь в этом самостоятельно).
Мы исчерпали возможности классической физики. В действительности последовательная теория сопротивления металлов была построена только в середине XX века с помощью представлений квантовой физики. Оказалось, что электроны в металле движутся с гигантскими скоростями υe ~ 0,01с (с – скорость света в вакууме). Это хаотическое движение частиц электронного газа имеет чисто квантовое, а не тепловое происхождение – оно не прекращается даже при абсолютном нуле температуры. Но и при столь огромных скоростях хаотического движения электронов в отсутствие электрического поля средний перенос заряда через выделенное сечение проводника равен нулю. При включении электрическою поля на это хаотическое движение накладывается упорядоченный дрейф электронов против поля – как это уже было описано выше. Расстояние же между двумя последовательными соударениями определяется именно большой скоростью хаотического движения и составляет для взятого нами конкретного медного проводника несколько десятков (а может бить, даже сотен) межатомных расстояний, что уже вполне правдоподобно.
И, наконец, последняя неожиданность. Согласно законам квантовой механики, электрон в идеальной периодической кристаллической решетке двигается так, что он... никогда не сталкивается с ионами, ее образующими. А как же быть тогда со всеми нашими предыдущими умозрительными построениями? Как же тогда электроны при своем движении в кристалле передают свою энергию решетке?
Оказывается, при низких температурах электроны сталкиваются с примесными атомами и другими дефектами, всегда имеющимися а решетке реального кристалла. Устраняя их, сопротивление кристаллического металлов можно делать все меньше и меньше. При комнатных же температурах электроны в основном рассеиваются на... колебаниях решетки. Если в неподвижной решетке они еще могли «строить» свое поведение так, чтобы «обойти» все периодически повторяющиеся ионы, то когда последние совершают тепловые колебания, электроны уже никак не могут «уследить» за их хаотическим движением и неизбежно сталкиваются то с одним, то с другим.
Вот, вкратце, какие «подводные камни» встретились нам при внимательном рассмотрении, казалось бы, такого ясного вопроса.