Kvant. Равнодействующая
Зильберман А. Р. Равнодействующая — как ее найти? //Квант. — 1988. — № 11. — С. 50-52.
По специальной договоренности с редколлегией и редакцией журнала "Квант"
Мы часто решаем задачи «с практическим содержанием», вовсе не отдавая себе отчета, насколько они сложны. Даже простой автомобиль содержит тысячи деталей, на каждую из которых действует множество сил. Просто перечислить их — и то трудно, а написать и решить столько уравнений... Однако мы умудряемся обойти это затруднение, вводя понятие равнодействующей силы. Поговорим об этом подробнее.
Для определения равнодействующей нужно все силы, действующие на тело, векторно сложить (не всегда это просто, но об этом чуть позже). Полученный суммарный вектор будет эквивалентен исходной системе сил.
Так уж и эквивалентен? Представьте, что лично вас тянут с силой 500 Н влево за левую руку и с такой же силой — вправо за правую руку. Сумма этих сил равна нулю, т. е. их как бы нет вовсе. Вам от этого легче?
На самом деле эквивалентность тут понимается в довольно узком смысле — при замене всех сил их равнодействующей не должно измениться движение тела, а вот о деформациях, разрывах и т. п. речи нет.
Какие же трудности могут возникнуть при сложении сил? Бели все они приложены в одной точке — то никаких. И складывать легко, и ясно, куда приложить суммарный вектор — равнодействующую. А если силы приложены в разных точках (чаще всего так и бывает)? Тогда придется силы переносить. Как это можно сделать? Тут нам понадобится специальная физическая величина — момент силы.
Момент силы \(~\vec F\) относительно точки О (рис. 1) равен
где r — расстояние от точки О до точки приложения силы А. Можно сделать иначе — разложить силу \(~\vec F\) на две составляющие — вдоль r и перпендикулярно r. Вращающий момент создает только перпендикулярная составляющая \(~\vec F_2\) :
Конечно, это просто предыдущая формула, переписанная немного иначе, но во многих задачах удобнее пользоваться именно ею.
Легко видеть, что при переносе силы \(~\vec F\) вдоль линии ее действия момент силы не изменяется, поэтому такой перенос допустим. (Заметим, что деформации тела при переносе точки приложения силы изменяются. Это легко понять на простом примере. Потянем привязанную одним концом к стене резиновую ленту вначале за середину, а потом за второй конец — она растянется неодинаково.)
Теперь вернемся к равнодействующей. Если силы приложены в разных точках, но линии их действия пересекаются в одной,— опять все просто. Перенесем силы вдоль линий их действия в эту точку и сложим — все, как в первом случае. Бели же линии действия сил не пересекаются в одной точке, задача нахождения равнодействующей усложняется.
Разберем для простоты частный случай, когда все векторы сил лежат в одной плоскости (плоская система сил). Можно попробовать решить задачу за несколько шагов — складывая силы попарно, как показано на рисунке 2. Вначале сложим силы \(~\vec F_1\) и \(~\vec F_2\) — получим вектор \(~\vec R_1\), а потом сложим его с вектором \(~\vec F_3\). Равнодействующая \(~\vec R\) приложена в точке А.
Так можно получить ответ не во всех случаях. Проблемы возникают, если векторы сил параллельны. Рассмотрим пример: нужно найти равнодействующую параллельных сил \(~\vec F_1\) и \(~\vec F_2\) (рис. 3). Ясно, что модуль равнодействующей равен сумме F1 и F2, а вот в какой точке должна быть приложена равнодействующая? Тут поможет простое рассуждение: какую бы точку приложения мы ни взяли, все равно момент равнодействующей относительно оси, проходящей через эту точку, равен нулю. Но при замене сил их равнодействующей моменты меняться не должны — значит, нужно взять такую точку, относительно которой суммарный момент исходной системы сил равен нулю. В нашем примере эту точку О можно найти из условия
Если \(~\vec F_1\) и \(~\vec F_2\) направлены в разные стороны, то точка О окажется за пределами отрезка АВ, ближе к той из сил, которая по величине больше. (Убедитесь в этом самостоятельно.)
Задачи, где нужно находить равнодействующую параллельных сил, вы наверняка решали. Так, обычно силы тяжести, приложенные к разным частям тела, считают параллельными. Центр тяжести тела — это как раз и есть точка приложения равнодействующей этих сил. Вот почему, например, тело, закрепленное на оси, которая проходит через центр тяжести тела, находится в равновесии.
Есть один важный частный случай параллельной системы сил, когда равнодействующую найти нельзя. Так будет для двух параллельных сил, которые равны по величине и противоположны по направлению. Эту систему называют парой сил. Попытка найти точку приложения пары сил приводит к делению на нуль — найти эту точку не удается. У пары сил есть одно интересное свойство: ее момент одинаков относительно любой оси вращения (проверьте это). Оказывается, таким свойством обладает любая система сил, сумма которых равна нулю (пара сил — частный случай такой системы).
Но именно такими системами сил мы и интересуемся, когда говорим об условиях равновесия тел (статика). Одно из условий — сумма сил равна нулю. Отсюда вытекает важное следствие: уравнение моментов, т. е. второе условие равновесия — сумма моментов равна нулю, можно записывать в этом случае относительно любой точки, в том числе и не лежащей внутри тела. Эту точку следует выбирать из соображений простоты получающегося уравнения (удобно ее взять, например, на пересечении линий действия нескольких сил, особенно тех, которые мы не хотим находить).