PhysBook
PhysBook
Представиться системе

Kvant. Проводники

Материал из PhysBook

Чивилёв В.И. Проводники в электростатическом поле //Квант. — 1988. — № 1. — С. 38-39.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

«Хочу сообщить вам новый и страшный опыт, который никак не советую повторять... Вдруг моя правая рука была поражена с такой силой, что все тело содрогнулось, как от удара молнии. ...Одним словом, я думал, что пришел конец ... Ради французской короны я не согласился бы еще раз подвергнуться столь жуткому сотрясению...» Это слова из воспоминаний лейденского профессора Мушенбрека, приведенные в книге В. Карцева «Приключения великих уравнений». Мушенбрек в 1745 году ставил опыты по электричеству и получил простейший конденсатор, названный впоследствии лейденской банкой. Во время опытов профессор и подвергся «столь жуткому сотрясению» в результате разряда конденсатора через человеческое тело, являющееся, как известно, проводником.

Тот факт, что в природе существуют проводники, обогащает окружающий нас мир разнообразными электрическими явлениями, среди которых есть и далеко небезопасные. Проводники занимают важное место при изучении электромагнетизма.

Рассмотрим подробно случай, когда заряженный неподвижный проводник находится во внешнем электростатическом поле (созданном посторонними неподвижными зарядами). В проводнике рано или поздно все заряды перестанут перемещаться, и наступит равновесие (так как в противном случае мы получили бы вечный двигатель в результате непрерывного выделения тепла при движении зарядов). Для такого заряженного и помещенного во внешнее электростатическое поле проводника будут справедливы утверждения, приведенные ниже.

1. Поле внутри проводника

В любой точке внутри проводника напряженность электрического поля равна нулю. Действительно, при невыполнении этого условия свободные заряды в проводнике под действием сил поля пришли бы в движение, и равновесие было бы нарушено.

2. Распределение заряда в проводнике

Для того чтобы ответить на вопрос о распределении заряда в проводнике, нам надо уточнить некоторые свойства силовых линий электростатического поля. Напомним, что силовая линия электрического поля (в том числе и электростатического) — это воображаемая линия в пространстве, проведенная так, чтобы касательная к ней в каждой точке совпадала с вектором напряженности электрического поля в этой точке. Опыт изучения электростатических полей дает основание заключить, что силовые линии этих полей непрерывны и не замкнуты, они могут начинаться только на положительных зарядах и оканчиваться только на отрицательных и не могут начинаться (заканчиваться) в точке пространства, где нет зарядов. При графическом изображении поля некоторой системы зарядов число силовых линий, начинающихся или заканчивающихся на каком-либо заряде, пропорционально модулю этого заряда. Отсюда следует, что из любого заряда обязательно выходят (или входят в него) силовые линии.

После сказанного о силовых линиях возвратимся к вопросу о распределении заряда в проводнике. Выделим мысленно произвольный достаточно малый объем ΔV внутри проводника (рис. 1). Предположим, что этот объем имеет заряд (для определенности, положительный). Тогда из выделенного объема будут выходить силовые линии, т. е. вблизи него будет существовать электрическое поле. Но поля внутри проводника нет. Поэтому выделенный объем должен быть нейтрален. А поскольку этот объем взят нами в произвольном месте внутри проводника, то можно утверждать, что вся «внутренность» проводника нейтральна и, следовательно, весь заряд проводника находится на его поверхности.

Рис. 1

3. Поле снаружи проводника вблизи его поверхности

Вектор напряженности электростатического поля в любой точке снаружи проводника вблизи его поверхности направлен перпендикулярно поверхности, что другими словами можно сказать так: силовые линии поля входят в проводник и выходят из него под прямым углом к поверхности проводника. В противном случае существовала бы составляющая вектора напряженности поля вдоль поверхности проводника, на свободные заряды на поверхности проводника действовала бы сила, имеющая составляющую вдоль поверхности. В результате этого по поверхности проводника стали бы двигаться заряды, что нарушило бы равновесие.

4. Распределение потенциала в проводнике

Покажем, что разность потенциалов любых двух точек проводника, включая точки поверхности, равна нулю. Пусть есть произвольные точки М и К внутри проводника. Перенесем мысленно из точки М в точку К пробный заряд q по некоторой траектории МВК, лежащей внутри проводника (рис. 2). Силы поля не совершат работы над перемещаемым зарядом q, так как поля внутри проводника нет. Поэтому разность потенциалов φM- φK = 0. Если точки М и К, одна или обе, лежат на поверхности проводника, то доказательство того, что разность потенциалов между ними равна нулю, аналогично.

Рис. 2

Так как разность потенциалов любых двух точек проводника равна нулю, то потенциал всех точек проводника, включая точки поверхности, один и тот же. Поэтому говорят о потенциале проводника, не указывая конкретной его точки. Поскольку все точки поверхности проводника имеют одинаковый потенциал, поверхность проводника будет эквипотенциальной поверхностью.

5. Полость внутри проводника

Удалим из внутренней области проводника часть вещества. Так как удаляемое вещество нейтрально, то следует ожидать, что электростатическое поле во всех точках вне проводника, внутри проводника и в возникшей полости не изменится. И это будет действительно так, причем на внутренней поверхности проводника (на поверхности полости) зарядов не будет. Весь заряд проводника сосредоточится на внешней поверхности проводника, а наличие полости внутри проводника не скажется на распределении заряда по внешней поверхности. Поле в полости и в проводнике будет отсутствовать. Потенциал всех точек проводника и полости окажется одинаков.

Короче говоря, полый проводник, имеющий заряд и помещенный во внешнее электростатическое поле, ведет себя так же, как и соответствующий сплошной. Доказательство этого утверждения приводить не будем, но заметим, что оно подтверждено многочисленными опытами, проведенными еще Г. Кавендишем (1731-1810) в конце XVIII века и М. Фарадеем (1791-1867) в начале XIX века.