Kvant. Абсолютно черное тело
Кикоин А.К. Абсолютно черное тело //Квант. — 1985. — № 2. — С. 26-28.
По специальной договоренности с редколлегией и редакцией журнала "Квант"
Свет и цвет
Когда мы при дневном (солнечном) свете смотрим на различные тела, окружающие нас, мы видим их окрашенными в различные цвета. Так, трава и листья деревьев — зеленые, цветы — красные или синие, желтые или фиолетовые. Есть также черные, белые, серые тела. Все это не может не вызвать удивления. Казалось бы, все тела освещены одним и тем же светом — светом Солнца. Почему же различны их цвета? Постараемся ответить на этот вопрос.
Будем исходить из того, что свет — это электромагнитная волна, то есть распространяющееся переменное электромагнитное поле. В солнечном свете содержатся волны, в которых электрическое и магнитное поля колеблются с различными частотами.
Всякое же вещество состоит из атомов и молекул, содержащих заряженные частицы, которые взаимодействуют друг с другом. Поскольку частицы заряжены, под действием электрического поля они могут двигаться, а если поле переменное — то они могут совершать колебания, причем каждая частица в теле имеет определенную собственную частоту колебаний.
Эта простая, хотя и не слишком точная, картина позволит нам понять, что происходит при взаимодействии света с веществом.
Когда на тело падает свет, электрическое поле, «принесенное» им, заставляет заряженные частицы в теле совершать вынужденные колебания (поле световой волны переменное!). При этом у некоторых частиц их собственная частота колебаний может совпасть с какой-то частотой колебаний поля световой волны. Тогда, как известно, произойдет явление резонанса — резкого увеличения амплитуды колебаний (о нем говорится в § 9 и 20 «Физики 10»). При резонансе энергия, принесенная волной, передается атомам тела, что в конечном счете, вызывает его нагревание. О свете, частота которого попала в резонанс, говорят, что он поглотился телом.
Но какие-то волны из падающего света не попадают в резонанс. Однако они тоже заставляют колебаться частицы в теле, но колебаться с малой амплитудой. Эти частицы сами становятся источниками так называемых вторичных электромагнитных волн той же частоты. Вторичные волны, складываясь с падающей волной, составляют отраженный или проходящий свет.
Если тело непрозрачное, то поглощение и отражение — вот все, что может произойти с падающим на тело светом: не попавший в резонанс свет отражается, попавший — поглощается. В этом и состоит «секрет» цветности тел. Если, например, из состава падающего солнечного света в резонанс попали колебания, соответствующие красному цвету, то в отраженном свете их не будет. А наш глаз устроен так, что солнечный свет, лишенный своей красной части, вызывает ощущение зеленого цвета. Окраска непрозрачных тел зависит, таким образом, от того, какие частоты падающего света отсутствуют в свете, отраженном телом.
Существуют тела, в которых заряженные частицы имеют так много различных собственных частот колебаний, что каждая или почти каждая частота в падающем свете попадает в резонанс. Тогда весь падающий свет поглощается, и отражаться просто нечему. Такие тела называют черными, то есть телами черного цвета. В действительности черный цвет — это не цвет, а отсутствие всякого цвета.
Есть и такие тела, в которых ни одна частота в падающем свете не попадает в резонанс, тогда поглощения нет вовсе, а весь падающий свет отражается. Такие тела называют белыми. Белый цвет — тоже не цвет, это смесь всех цветов.
Излучение света
Известно, что всякое тело может само стать источником света. Это и понятно — ведь во всяком теле есть колеблющиеся заряженные частицы, способные стать источниками испускаемых волн. Но при обычных условиях — при небольших температурах — частоты этих колебаний сравнительно малы, и испускаемые длины волн существенно превосходят длины волн видимого света (инфракрасный свет). При высокой же температуре в теле «включаются» колебания и более высоких частот, и оно начинает испускать световые волны, видимые глазом.
Какой же свет излучает тело, колебания каких частот могут быть « включены» при нагревании? Очевидно, что возникнуть могут только колебания с собственными частотами. При низких температурах число заряженных частиц, имеющих высокие собственные частоты колебаний, мало, и их излучение незаметно. С повышением температуры число таких частиц возрастает, и становится возможным излучение видимого света.
Связь между излучением и поглощением света
Поглощение и излучение — это противоположные друг другу явления. Однако между ними есть нечто общее.
Поглощать — это значит «брать», излучать — значит «давать». А что «берет» тело, поглощая свет? Очевидно, то, что может взять, то есть свет тех частот, которые равны собственным частотам колебаний его частиц. Что «дает» тело, излучая свет? То, что оно имеет, то есть свет, соответствующий собственным частотам колебаний. Поэтому между способностью тела излучать свет и способностью его поглощать должна существовать тесная связь. И связь эта простая: тело излучает тем больше, чем сильнее оно поглощает. При этом, естественно, самым ярким излучателем должно быть черное тело, которое поглощает колебания всех частот. Математически эта связь была установлена в 1859 году немецким физиком Густавом Кирхгофом.
Назовем испускательной способностью тела энергию, излучаемую единицей площади его поверхности в единицу времени, и обозначим ее через Eλ,T. Она различна для разных длин волн (λ) и разных температур (Т), отсюда индексы λ и Т. Поглощательной способностью тела назовем отношение поглощенной телом световой энергии в единицу времени к падающей. Обозначим ее через Aλ,T — она тоже различна для разных λ и Т.
Закон Кирхгофа гласит, что отношение испускательной и поглощательной способностей одинаково для всех тел:
Величина С не зависит от природы тел, но зависит от длины волны света и от температуры: C = f(λ, T). Согласно закону Кирхгофа, тело, которое при данной температуре лучше поглощает, должно интенсивнее излучать.
Абсолютно черное тело
Закон Кирхгофа справедлив для всех тел. Это значит, что его можно применить и к такому телу, которое поглощает все без исключения длины волн. Такое тело называют абсолютно черным. Для него поглощательная способность равна единице, так что закон Кирхгофа принимает вид
Таким образом, становится ясным смысл функции f(λ, T): она равна испускательной способности абсолютно черного тела. Задача нахождения функции C = f(λ, T) превратилась в задачу найти зависимость энергии излучения абсолютно черного тела от температуры и длины волны. В конце концов, после двух десятилетий тщетных попыток она была решена. Ее решение, данное немецким физиком-теоретиком Максом Планком, стало началом новой физики — квантовой физики.
Заметим, что абсолютно черных тел в природе не существует. Даже самое черное из всех известных веществ — сажа — поглощает не 100, а 98 % падающего на него света. Поэтому для экспериментального исследования излучения абсолютно черного тела использовалось искусственное устройство.
Оказалось, что свойствами абсолютно черного тела обладает... замкнутая полость с малым отверстием (см. рисунок). В самом деле, когда в отверстие попадает луч света, внутри полости он испытывает множество последовательных отражений, так что шансов выйти из отверстия наружу у него очень мало. (По этой же причине открытое окно в доме кажется темным даже в яркий солнечный день). Если такое тело нагреть, то излучение, исходящее из отверстия, практически ничем не отличается от излучения абсолютно черного тела.
Хорошей имитацией абсолютно черного тела может служить и труба, один конец которой закрыт. Если трубу нагреть, ее открытый конец светит как абсолютно черное тело. При обычной же температуре он выглядит совершенно черным, как и отверстие в полости.