GSA. Капиллярные явления.
Капиллярные явления. Смачивание
При рассмотрении капиллярных явлений следует подчеркнуть их роль в биологии, так как большинство растительных и животных тканей пронизано громадным числом капиллярных сосудов. Именно в капиллярах происходят основные процессы, связанные с дыханием и питанием организма, вся сложнейшая химия жизни, тесно связана с диффузионными явлениями.
Как известно, стволы деревьев, ветви растений пронизаны огромным числом капиллярных трубочек, по. которым питательные вещества поднимаются до самых верхних листочков. Корневая система растений, в свою очередь, оканчиваются тончайшими нитями - капиллярами. И сама почва, являющаяся источником питания для корня, может быть представлена как совокупность капиллярных трубочек, по которым, в зависимости от ее структуры и обработки, быстрее или медленнее поднимается к поверхности вода с растворенными в ней веществами. Высота подъема жидкости в капиллярах тем больше, чем меньше его диаметр; отсюда ясно, что для сохранения влаги надо почву перекапывать, а для осушения - утрамбовывать.
Приведем некоторые данные для организма человека.
Площадь поперечного сечения аорты 8 см2, а общая площадь сечения всех капилляров примерно 3200 см2, то есть площадь капилляров больше площади аорты примерно в 400 раз. Соответственно падает скорость кровотока - от 20 см/с в начале аорты до 0,05 см/с в капилляре.
Диаметр каждого капилляра в 50 раз меньше диаметра человеческого волоса, а его длина менее 0,5 мм. В теле взрослого человека имеется до 160 млрд. капилляров. Общая длина капилляров достигает 60 - 80 тыс. км; через каждый квадратный миллиметр поперечного сечения сердечной мышцы в среднем проходит до 2 тыс. капилляров.
Физической моделью сердечнососудистой системы может служить система из множества разветвленных трубок с упругими стенками. По мере разветвления общее сечение трубок возрастает, и скорость движения жидкости соответственно уменьшается. Однако вследствие того, что разветвление состоит из множества узких каналов, потери на внутреннее трение при этом сильно возрастают и общее сопротивление движению жидкостей (несмотря на снижение скорости) значительно увеличивается. Роль поверхностных явлений в жизни живой природы очень разнообразна. Например, поверхностная пленка воды является для многих организмов опорой для движения. Такая форма движения встречается у мелких насекомых и паукообразных. Наиболее известны водомерки, опирающиеся на воду только конечными члениками широко расставленных лапок; лапка, покрытая воскообразным налетом, не смачивается водой, поверхностный слой воды прогибается под давлением лапки, образуя небольшое углубление. Подобным образом перемещаются береговые пауки некоторых видов, но их лапки располагаются не параллельно поверхности воды, как у водомерок, а под прямым углом к ней.
Некоторые животные, обитающие в воде, но не имеющие жабр, подвешиваются снизу у поверхностной пленки воды с помощью особых не смачивающихся щетинок, окружающих их органы дыхания. Этим приемом пользуются личинки комаров (в том числе и малярийных).
Перья и пух водоплавающих птиц всегда обильно смазаны жировыми выделениями особых желез, что объясняет их непромокаемость. Толстый слой воздуха, заключенный между перьями утки и не вытесняемый оттуда водой, не только защищает ее от потери тепла, но и чрезвычайно увеличивает ее «запас плавучести», действуя подобно спасательному поясу. Воскообразный налет на листьях препятствует заливанию так называемых устьиц, которое могло бы привести к нарушению правильного дыхания растений; наличием того же воскового налета объясняется водонепроницаемость соломенной кровли, сена в стогах и т.д.