PhysBook
PhysBook
Представиться системе

A. Применение фотоэффекта

Материал из PhysBook

Применение фотоэффекта в технике

Приборы, принцип действия которых основан на явлении фотоэффекта, называют фотоэлементами. Фотоэлементы, действие которых основано на внешнем фотоэффекте, имеют следующее устройство (рис. 19.6). Внутренняя поверхность стеклянного баллона, из которого выкачан воздух, по крыта светочувствительным слоем К с небольшим прозрачным для света участком — "окном" О для доступа света внутрь баллона. В центре баллона находится металлическое кольцо А. От электродов К к А сделаны выводы для подключения фотоэлемента к электрической цепи. В качестве светочувствительного слоя обычно используют напыленные покрытия из щелочных металлов, имеющих малую работу выхода, т.е. чувствительных к видимому свету (изготовляют и фотоэлементы, чувствительные только к ультрафиолетовым лучам).

Фотоэлементы, действие которых основано на внешнем фотоэффекте, преобразуют в электрическую энергию лишь незначительную часть энергии излучения. Поэтому в качестве источников электроэнергии их не используют, зато широко применяют в различных схемах автоматики для управления электрическими цепями с помощью световых пучков.

В качестве примера рассмотрим принцип действия фотоэлектрического реле, срабатывающего при прерывании светового потока, падающего на фотоэлемент (рис. 19.7, а). Фотореле состоит из фотоэлемента Ф, усилителя фототока, в качестве которого используют полупроводниковый триод (транзистор) Т, и электромагнитного реле, включенного в цепь коллектора транзистора. Напряжение на фотоэлемент подают от источника тока E1, а на транзистор — от источника тока Е2. Между базой и эмиттером транзистора включен нагрузочный резистор R.

Рис. 19.7

Когда фотоэлемент освещен, в его цепи, содержащей резистор Я, идет слабый ток, потенциал базы транзистора выше потенциала эмиттера, и ток в коллекторной цепи транзистора отсутствует.

Если же поток света, падающий на фотоэлемент, прерывается, ток в его цепи сразу прекращается, переход эмиттер — база открывается для основных носителей, и через обмотку реле, включенного в цепь коллектора, пойдет ток. Реле срабатывает, и его контакты замыкают исполнительную цепь. Ее функциями могут быть остановка пресса, в зону действия которого попала рука человека, выдвигание преграды в турникете метро, автоматическое включение освещения на улицах. Фотоэлементы применяются в военном деле в самонаводящихся снарядах, для сигнализации и локации невидимыми лучами (инфракрасными).

С помощью фотоэлементов осуществляется воспроизведение звука, за-писанного на кинопленке, а также передача движущихся изображений (телевидение).

Комбинация явлений фотоэффекта со вторичной электронной эмиссией применяется в фотоэлектронных умножителях (ФЭУ) (рис. 19.7, б), представляющих собой вакуумную трубку с фотокатодом К и анодом А, между которыми расположено несколько электродов-эмиттеров. Электроны, вырванные с фотокатода под действием света, попадают на эмиттер Э1, пройдя ускоряющую разность потенциалов между К к Э1. Из эмиттера Э1 выбиваются электроны. Усиленный электронный поток направляется на эмиттер Э2 и процесс умножения повторяется на всех последующих эмиттерах. Усиление 9-каскадного ФЭУ достигает 106, т.е. на выходе из фотоумножителя сила тока в миллион раз превосходит первичный фототок.

На явлении внутреннего фотоэффекта основана работа фотосопротивлений. Простейшее фотосопротивление (рис. 19.8) — это пластинка из диэлектрика, покрытая тонким слоем полупроводника, на поверхности которого укреплены токопроводящие электроды. При освещении пластинки возникает фотопроводимость, и в цепи, где включены фотосопротивления, идет ток. Фотосопротивления применяются в звуковом кино, для сигнализации, в телевидении, автоматике и телемеханике. Фотоэлементы применяются для сортировки массовых изделий по размерам и окраске. Пучок света падает на фотоэлемент, отразившись от сортируемых изделий, которые непрерывно подаются на конвейер. Окраска изделия или его размер определяют световой поток, попадающий на фотоэлемент, и силу фототока. В зависимости от силы фототока автоматически производится сортировка изделий.

Рис. 19.8

На рисунке 19.8 изображена схема устройства фотоэлемента с запирающим слоем (вентильным фотоэлемент). Две соприкасающиеся друг с другом пластинки, изготовленные из металла и его оксида (полупроводника), покрыты сверху тонким прозрачным слоем металла. Пограничный слой между металлом и его оксидом имеет одностороннюю электропроводность — электроны могут проходить лишь в направлении от оксида металла к металлу. Поток электронов, идущий в этом направлении, создается под действием света без всякого внешнего источника напряжения. Вентильный фотоэлемент непосредственно превращает энергию световой волны в энергию электрического тока, т.е. является источником тока. На этом принципе основано действие солнечных  батарей, которые устанавливаются на космических кораблях. Такие фото-элементы являются основной частью люксметров — приборов для измерения освещенности, а также фотоэкспонометров.


Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 561-564.