PhysBook
PhysBook
Представиться системе

A. Поверхностное натяжение

Материал из PhysBook

Поверхностное натяжение

Свойство поверхности жидкости сокращаться можно истолковать как существование сил, стремящихся сократить эту поверхность. Молекула M1 (рис. 2), расположенная на поверхности жидкости, взаимодействует не только с молекулами, находящимися внутри жидкости, но и с молекулами, находящимися на поверхности жидкости, расположенными в пределах сферы молекулярного действия. Для молекулы M1 равнодействующая \(~\vec R\) молекулярных сил, направленных вдоль свободной поверхности жидкости, равна нулю, а для молекулы M2, расположенной у границы поверхности жидкости, \(~\vec R \ne 0\) и \(~\vec R\) направлена по нормали к границам свободной поверхности и по касательной к самой поверхности жидкости.

Рис. 2

Равнодействующая сил, действующих на все молекулы, находящиеся на границе свободной поверхности, и есть сила поверхностного натяжения. В целом она действует так, что стремится сократить поверхность жидкости.

Можно предположить, что сила поверхностного натяжения \(~\vec F\) прямо пропорциональна длине l границы поверхностного слоя жидкости, ведь на всех участках поверхностного слоя жидкости молекулы находятся в одинаковых условиях:

\(~F \sim l .\)

Действительно, рассмотрим вертикальный прямоугольный каркас (рис. 3, а, б), подвижная сторона которого уравновешена. После извлечения рамки из раствора мыльной пленки подвижная часть перемещается из положения 1 в положение 2. Учитывая, что пленка представляет собой тонкий слой жидкости и имеет две свободные поверхности, найдем работу, совершаемую при перемещении поперечины на расстояние h = a1a2: A = 2Fh, где F — сила, действующая на каркас со стороны каждого поверхностного слоя. С другой стороны, \(~A = \alpha \Delta S = \alpha \cdot 2lh\).

Рис. 3

Следовательно, \(~2Fh = \alpha \cdot 2lh \Rightarrow F = \alpha l\), откуда \(~\alpha = \frac Fl\).

Согласно этой формуле единицей коэффициента поверхностного натяжения в СИ является ньютон на метр (Н/м).

Коэффициент поверхностного натяжения α численно равен силе поверхностного натяжения, действующей на единицу длины границы свободной поверхности жидкости. Коэффициент поверхностного натяжения зависит от природы жидкости, от температуры и от наличия примесей. При увеличении температуры он уменьшается. При критической температуре, когда исчезает различие между жидкостью и паром, α = 0.

Примеси в основном уменьшают (некоторые увеличивают) коэффициент поверхностного натяжения.

Таким образом, за счет сил поверхностного натяжения поверхностный слой жидкости всегда находится в состоянии натяжения. Однако это состояние существенно отличается от натяжения упругой резиновой пленки. Упругая пленка растягивается за счет увеличения расстояния между частицами, при этом сила натяжения возрастает, при растяжении же жидкой пленки расстояние между частицами не меняется, а увеличение поверхности достигается в результате перехода молекул из толщи жидкости в поверхностный слой. Поэтому при увеличении поверхности жидкости сила поверхностного натяжения не изменяется (она не зависит от площади поверхности).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 180-181.