PhysBook
PhysBook
Представиться системе

A. Методы регистрации

Материал из PhysBook

Экспериментальные методы регистрации заряженных частиц

Приборы для регистрации заряженных частиц называются детекторами. Существует два основных вида детекторов:

1) дискретные (счетные и определяющие энергию частиц): счетчик Гейгера, ионизационная камера и др.;

2) трековые (дающие возможность наблюдать и фотографировать следы (треки) частиц в рабочем объеме детектора): камера Вильсона, пузырьковая камера, толстослойные фотоэмульсии и др.

1. Газоразрядный счетчик Гейгера. Для регистрации электронов и \(~\gamma\)-квантов (фотонов) большой энергии используется счетчик Гейгера—Мюллера. Он состоит из стеклянной трубки (рис. 22.4), к внутренним стенкам которой прилегает катод К — тонкий металлический цилиндр; анодом А служит тонкая металлическая проволока, натянутая по оси счетчика. Трубка заполняется газом, обычно аргоном. Счетчик включается в регистрирующую схему. На корпус подается отрицательный потенциал, на нить — положительный. Последовательно счетчику включается резистор R, с которого сигнал подается к регистрирующему устройству.

Рис. 22.4

Действие счетчика основано на ударной ионизации. Пусть в счетчик попала частица, создавшая на своем пути хотя бы одну пару: "ион + электрон". Электроны, двигаясь к аноду (нити), попадают в поле с нарастающей напряженностью (напряжение между А и K ~ 1600 В), их скорость стремительно возрастает, и на своем пути они создают ионную лавину (возникает ударная ионизация). Попав на нить, электроны снижают ее потенциал, вследствие чего по резистору R пойдет ток. На его концах возникает импульс напряжения, который и поступает в регистрационное устройство.

На резисторе происходит падение напряжения, потенциал анода уменьшается, и напряженность поля внутри счетчика убывает, вследствие чего уменьшается кинетическая энергия электронов. Разряд прекращается. Таким образом, резистор играет роль сопротивления, автоматически гасящего лавинный разряд. Положительные ионы стекают к катоду в течение \(~t \approx 10^{-4}\) с после начала разряда.

Счетчик Гейгера позволяет регистрировать 104 частиц в секунду. Он применяется в основном для регистрации электронов и \(~\gamma\)-квантов. Однако непосредственно \(~\gamma\)-кванты вследствие своей малой ионизирующей способности не регистрируются. Для их обнаружения внутреннюю стенку трубки покрывают материалом, из которого \(~\gamma\)-кванты выбивают электроны. При регистрации электронов эффективность счетчика 100 %, а при регистрации \(~\gamma\)-квантов — лишь около 1 %.

Регистрация тяжелых \(~\alpha\)-частиц затруднена, так как сложно сделать в счетчике достаточно тонкое "окошко", прозрачное для этих частиц.

2. Камера Вильсона.

В камере используется способность частиц больших энергий ионизировать атомы газа. Камера Вильсона (рис. 22.5) представляет собой цилиндрический сосуд с поршнем 1. Верхняя часть цилиндра сделана из прозрачного материала, в камеру вводится небольшое количество воды или спирта, для чего снизу сосуд покрыт слоем влажного бархата или сукна 2. Внутри камеры образуется смесь насыщенных паров и воздуха. При быстром опускании поршня 1 смесь адиабатически расширяется, что сопровождается понижением ее температуры. За счет охлаждения пар становится пересыщенным.

Рис. 22.5

Если воздух очищен от пылинок, то конденсация пара в жидкость затруднена из-за отсутствия центров конденсации. Однако центрами конденсации могут служить и ионы. Поэтому если через камеру (впускают через окошко 3) пролетает заряженная частица, ионизирующая на своем пути молекулы, то на цепочке ионов происходит конденсация паров и траектория движения частицы внутри камеры благодаря осевшим маленьким капелькам жидкости становится видимой. Цепочка образовавшихся капель жидкости образует трек частицы. Тепловое движение молекул быстро размывает трек частиц, и траектории частиц видны отчетливо лишь около 0,1 с, что, однако, достаточно для фотографирования.

Вид трека на фотоснимке часто позволяет судить о природе частицы и величине ее энергии. Так, \(~\alpha\)-частицы оставляют сравнительно толстый сплошной след, протоны — более тонкий, а электроны — пунктирный (рис. 22.6). Появляющееся расщепление трека — "вилки" свидетельствует о происходящей реакции.

Рис. 22.6

Чтобы подготовить камеру к действию и очистить ее от оставшихся ионов, внутри нее создают электрическое поле, притягивающее ионы к электродам, где они нейтрализуются.

Советские физики П. Л. Капица и Д. В. Скобельцын предложили размещать камеру в магнитном поле, под действием которого траектории частиц искривляются в ту или иную сторону в зависимости от знака заряда. По радиусу кривизны траектории и интенсивности треков определяют энергию и массу частицы (удельный заряд).

3. Пузырьковая камера. В настоящее время в научных исследованиях используется пузырьковая камера. Рабочий объем в пузырьковой камере заполнен жидкостью под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой и в течение небольшого времени находится в неустойчивом состоянии. Если через такую жидкость пролетит заряженная частица, то вдоль ее траектории жидкость закипит, поскольку образовавшиеся в жидкости ионы служат центрами парообразования. При этом траектория частицы отмечается цепочкой пузырьков пара, т.е. делается видимой. В качестве жидкостей используются главным образом жидкий водород и пропан С3Н3. Длительность рабочего цикла порядка 0,1 с.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества, вследствие чего частица теряет больше энергии, чем в газе. Пробеги частиц оказываются более короткими, и частицы даже больших энергий застревают в камере. Это позволяет гораздо точнее определить направление движения частицы и ее энергию, наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

4. Метод толстослойных фотоэмульсий разработан Л. В. Мысовским и А. П. Ждановым.

Он основан на использовании почернения фотографического слоя под действием проходящих через фотоэмульсию быстрых заряженных частиц. Такая частица вызывает распад молекул бромистого серебра на ионы Ag+ и Вг- и почернение фотоэмульсии вдоль траектории движения, образуя скрытое изображение. При проявлении в этих кристалликах восстанавливается металлическое серебро и образуется трек частицы. По длине и толщине трека судят об энергии и массе частицы.

Для изучения следов частиц, обладающих очень высокой энергией и дающих длинные следы, большое количество пластинок складывается в стопу.

Существенным преимуществом метода фотоэмульсий, помимо простоты применения, является то, что он дает неисчезающий след частицы, который затем может быть тщательно изучен. Это привело к широкому применению данного метода при исследовании новых элементарных частиц. Этим методом с добавлением к эмульсии соединений бора или лития могут быть изучены следы нейтронов, которые в результате реакций с ядрами бора и лития создают \(~\alpha\)-частицы, вызывающие почернение в слое ядерной эмульсии. По следам \(~\alpha\)-частиц делаются выводы о скорости и энергиях нейтронов, вызвавших появление \(~\alpha\)-частиц.


Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 618-621.