PhysBook
PhysBook
Представиться системе

A. Дифракционная решетка

Материал из PhysBook

Дифракционная решетка. Дифракционный спектр

Важную роль в прикладной оптике играют явления дифракции на отверстиях в форме щели с параллельными краями. При этом использование дифракции света на одной щели в практических целях затруднено из-за слабой видимости дифракционной картины. Широко используются дифракционные решетки.

Дифракционная решетка — спектральный прибор, служащий для разложения света в спектр и измерения длины волны. Различают прозрачные и отражающие решетки. Дифракционная решетка представляет собой совокупность большого числа параллельных штрихов одинаковой формы, нанесенных на плоскую или вогнутую полированную поверхность на одинаковом расстоянии друг от друга.

В прозрачной плоской дифракционной решетке (рис. 17.22) ширина прозрачного штриха равна а, ширина непрозрачного промежутка — Ь. Величина \(d = a + b = \frac{1}{N} \) называется постоянной (периодом) дифракционной решетки, где N — число штрихов на единицу длины решетки.

Рис. 17.22

Пусть плоская монохроматическая волна падает нормально к плоскости решетки (рис. 17.22). По принципу Гюйгенса—Френеля каждая щель является источником вторичных волн, способных интерферировать друг с другом. Получившуюся дифракционную картину можно наблюдать в фокальной плоскости линзы, на которую падает дифрагированный пучок.

Допустим, что свет дифрагирует на щелях под углом \(\varphi.\) Так как щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, для данного направления \(\varphi\) будут одинаковыми в пределах всей дифракционной решетки:

\(\Delta = CF = (a+b)\sin \varphi = d \sin \varphi .\)

В тех направлениях, для которых разность хода равна четному числу полуволн, наблюдается интерференционный максимум. Наоборот, для тех направлений, где разность хода равна нечетному числу полуволн, наблюдается интерференционный минимум. Таким образом, в направлениях, для которых углы \(\varphi\) удовлетворяют условию

\(d \sin \varphi = m \lambda (m = 0,1,2, \ldots),\)

наблюдаются главные максимумы дифракционной картины. Эту формулу часто называют формулой дифракционной решетки. В ней m называется порядком главного максимума. Между главными максимумами располагается (N - 2) слабых побочных максимумов, но на фоне ярких главных максимумов они практически не видны. При увеличении числа штрихов N (шелей) главные максимумы, оставаясь на прежних местах, становятся все более резкими.

При наблюдении дифракции в немонохроматическом (белом) свете все главные максимумы, кроме нулевого центрального максимума, окрашены. Это объясняется тем, что, как видно из формулы \(\sin \varphi = \frac{m \lambda}{d},\) различным длинам волн соответствуют различные углы, на которых наблюдаются интерференционные максимумы. Радужная полоска, содержащая в общем случае семь цветов — от фиолетового до красного (считается от центрального максимума), называется дифракционным спектром.

Ширина спектра зависит от постоянной решетки и увеличивается при уменьшении d. Максимальный порядок спектра определяется из условия \(~\sin \varphi \le 1,\) т.е. \(m_{max} = \frac{d}{\lambda} = \frac{1}{N\lambda}.\)


Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 517-518.