Т. Трансформатор
Трансформатор
Трансформатор — устройство, служащее для преобразования силы и напряжения переменного тока при неизменной частоте.
Он был изобретен П.Н.Яблочковым в 1878 г., а технический трансформатор впервые создал И.Ф.Усагин в 1882 г.
Работа трансформатора основана на явлении электромагнитной индукции. Простейший трансформатор (рис. 1) представляет собой две изолированные друг от друга катушки (обмотки), намотанные на общий замкнутый сердечник.
По одной из обмоток (первичной) пропускается преобразуемый переменный ток, а вторичная обмотка соединяется с потребителем. Ток в первичной обмотке создает в сердечнике переменный магнитный поток, который возбуждает ЭДС самоиндукции \(~\varepsilon = -\frac {\Delta \Phi}{\Delta t}\) в каждом витке первичной катушки (ΔΦ — изменение магнитного потока через один виток за время Δt). Этот же магнитный поток пронизывает витки вторичной катушки и создает в каждом ее витке ЭДС индукции \(~\varepsilon .\) Если первичная обмотка имеет N1 витков, а вторичная N2 витков, то в обмотках индуцируются (без учета потерь на рассеивание магнитного потока) соответственно электродвижущие силы \(~\varepsilon_1 = - N_1\frac {\Delta \Phi}{\Delta t}, \varepsilon_2 = - N_2\frac {\Delta \Phi}{\Delta t},\) а их отношение \(~\frac {\varepsilon_1}{\varepsilon_2} = \frac {N_1}{N_2}, \) т.е. возникающие в катушках ЭДС индукции (самоиндукции) пропорциональны числу витков в них:
Отношение числа витков в первичной обмотке к числу витков во вторичной называют коэффициентом трансформации k .
Если N2 > N1 (k < 1), то трансформатор называется повышающим, а если N2 < N1 (k > 1) — понижающим.
Коэффициент трансформации определяется обычно при холостом ходе трансформатора, т.е. при разомкнутой цепи вторичной обмотки. В этом случае в первичной обмотке проходит так называемый ток холостого хода, действующее значение которого Ix. На основании закона Ома для замкнутой цепи действующие значения напряжения U1, приложенного к первичной обмотке, ЭДС самоиндукции \(~\varepsilon_1\) и сила тока Ix в первичной обмотке связаны между собой соотношением \(~U_1 - \varepsilon_1 = I_x R_1,\) где R1 — активное сопротивление первичной обмотки. Знак минус обусловлен тем, что ЭДС \(~\varepsilon_1\) согласно правилу Ленца противофазна U1. Трансформатор проектируется так, чтобы в отсутствие нагрузки потребляемый из сети ток был незначительным. Это достигается выбором малого активного сопротивления R1 и достаточно большого индуктивного сопротивления ωL. Для увеличения индуктивности катушки в нее вводят стальной сердечник и наматывают достаточно большое число витков N1. Тогда сила тока \(~I_x \sim \frac 1{\sqrt {R^2 + \left( wL\right)^2}}\) будет мала и величиной Ix R1 можно пренебречь. Следовательно, \(~U_1 \approx \varepsilon_1.\)
Цепь вторичной обмотки при холостом ходе разомкнута, вследствие чего в ней тока нет, и напряжение на зажимах вторичной обмотки равно индуцированной в ней ЭДС индукции \(~U_2 = \varepsilon_2.\) Поэтому коэффициент трансформации можно найти, измерив напряжения на концах катушек при холостом режиме
При включении во вторичную цепь какой-либо нагрузки (рабочий ход трансформатора) в ней начинает проходить ток нагрузки I2 (переменный, такой же частоты). Ток I2 создает в сердечнике магнитный поток, направленный по правилу Ленца навстречу потоку первичной обмотки. В результате суммарный поток магнитной индукции в первичной катушке уменьшается, уменьшается и ЭДС \(~\varepsilon_1,\) а следовательно, сила тока \(~I_1 = \frac {U_1 - \varepsilon_1}{R_1}\) увеличивается. Увеличение тока в первичной цепи приводит к увеличению магнитного потока, ЭДС индукции и силы тока во вторичной цепи. Но увеличение тока во вторичной цепи сопровождается увеличением тока самоиндукции и, следовательно, уменьшением магнитного потока (который только что возрастал). В конце концов при постоянной нагрузке устанавливаются определенные магнитный поток, ЭДС индукции во вторичной цепи, ток I1 в первичной цепи (I1 > Ix). Таким образом, увеличение тока I2 во вторичной цепи автоматически приводит к увеличению тока I1 в первичной цепи, т.е. трансформатор автоматически регулирует потребление энергии в зависимости от нагрузки во вторичной цепи.
При рабочем ходе трансформатора происходит непрерывная передача энергии из первичной цепи во вторичную. Мощность, потребляемая в первичной цепи \(~P_1 = I_1 U_1 \cos \varphi_1,\) а выделяемая на нагрузке \(~P_2 = I_2 U_2 \cos \varphi_2.\) Коэффициент полезного действия трансформатора
Не вся энергия, потребляемая от генератора, передается потребителю. При работе трансформатора имеются потери на нагревание обмоток трансформатора, на рассеивание магнитного потока в пространство, на вихревые токи Фуко (см. Закон электромагнитной индукции) в сердечнике и его перемагничивание. Для уменьшения этих потерь принимаются следующие меры: 1) обмотка низкого напряжения делается большего сечения, так как по ней проходит ток большей силы; 2) сердечник делают замкнутым, что уменьшает рассеивание магнитного потока; 3) сердечник делают из изолированных пластин для уменьшения токов Фуко и др. Благодаря этим мерам КПД современных трансформаторов достигает =95—99%, сдвиги фаз между колебаниями силы тока и напряжения близки к нулю \(~\left( \cos \varphi \approx 1\right).\)
Если иногда можно пренебречь потерями в трансформаторе, т.е. считать η =100%, то \(~P_1 = P_2 \Rightarrow I_1 U_1 = I_2 U_2 \Rightarrow \frac {I_1}{I_2} = \frac {U_2}{U_1},\) это значит, увеличивая с помощью трансформатора напряжение, мы во столько же раз уменьшаем силу тока и наоборот.
При рабочем режиме трансформатора напряжения на его обмотках уже не будут равны ЭДС. Учитывая потери только на активных сопротивлениях, напряжения U1 и U2 можно рассчитать, исходя из закона Ома для замкнутой цепи.
По закону Ома для замкнутой первичной цепи трансформатора алгебраическая сумма подводимого к трансформатору напряжения U1 и возникающей ЭДС \(~\varepsilon_1\) самоиндукции равна падению напряжения в цепи (на активном сопротивлении первичной обмотки R1):
Для подключенной нагрузки R роль источника тока выполняет вторичная обмотка, ЭДС в которой \(~\varepsilon_2.\) Она должна быть равна падению напряжения во вторичной цепи (на нагрузке R и на активном сопротивлении R2 вторичной обмотки):
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 409-412.