Т. Работа в термодинамике
Работа в термодинамике
При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.
Пусть в цилиндре с подвижным поршнем находится газ при температуре T1 (рис. 1). Будем медленно нагревать газ до температуры T2. Газ будет изобарически расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl. Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = pS тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле
где ΔV — изменение объема газа. Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.
Сила давления газа выполняет работу только в процессе изменения объема газа.
При расширении (ΔV > 0) газа совершается положительная работа (А > 0); при сжатии (ΔV < 0) газа совершается отрицательная работа (А < 0), положительную работу совершают внешние силы А’ = -А > 0.
Запишем уравнение Клапейрона—Менделеева для двух состояний газа:
Следовательно, при изобарном процессе
Если m = М (1 моль идеального газа), то при ΔΤ = 1 К получим R = A. Отсюда вытекает физический смысл универсальной газовой постоянной: она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.
На графике p = f(V) при изобарном процессе работа равна площади заштрихованного на рисунке 2, а прямоугольника.
Если процесс не изобарный (рис. 2, б), то кривую p = f(V) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет
т.е. будет равна площади заштрихованной фигуры. При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке 2, в.
Определить работу, используя последнюю формулу, можно только в том случае, если известно, как изменяется давление газа при изменении его объема, т.е. известен вид функции p(V).
Таким образом, газ при расширении совершает работу. Приборы и агрегаты, действия которых основаны на свойстве газа в процессе расширения совершать работу, называются пневматическими. На этом принципе действуют пневматические молотки, механизмы для закрывания и открывания дверей на транспорте и др.
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 155-156.