Т. Закон Ома
Закон Ома для замкнутой цепи
Замкнутая цепь (рис. 2) состоит из двух частей — внутренней и внешней. Внутренняя часть цепи представляет собой источник тока, обладающий внутренним сопротивлением r; внешняя — различные потребители, соединительные провода, приборы и т.д. Общее сопротивление внешней части обозначается R. Тогда полное сопротивление цепи равно r + R.
По закону Ома для внешнего участка цепи 1 → 2 имеем:
Внутренний участок цепи 2 → 1 является неоднородным. Согласно закону Ома, \(~\varphi_2 - \varphi_1 + \varepsilon = Ir\). Сложив эти равенства, получим
Отсюда
Последняя формула представляет собой закон Ома для замкнутой цепи постоянного тока. Сила тока в цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи.
Так как для однородного участка цепи разность потенциалов есть напряжение, то \(~\varphi_1 - \varphi_2 = IR = U\) и формулу (1) можно записать:
Из этой формулы видно, что напряжение на внешнем участке уменьшается с увеличением силы тока в цепи при ε = const.
Подставим в последнюю формулу силу тока (2), получим
Проанализируем это выражение для некоторых предельных режимов работы цепи.
а) При разомкнутой цепи (R → ∞) U = ε, т.е. напряжение на полюсах источника тока при разомкнутой цепи равно ЭДС источника тока.
На этом основана возможность приблизительного измерения ЭДС источника тока с помощью вольтметра, сопротивление которого много больше внутреннего сопротивления источника тока (\(~R_v \gg r\)). Для этого вольтметр подключают к клеммам источника тока.
б) Если к клеммам источника тока подключить проводник, сопротивление которого \(~R \ll r\), то R + r ≈ r, тогда \(~U = \varepsilon \left( 1 - \frac{r}{r} \right) = 0\) , а сила тока \(~I = \frac{\varepsilon}{r}\) — достигает максимального значения.
Подключение к полюсам источника тока проводника с ничтожно малым сопротивлением называется коротким замыканием, а максимальную для данного источника силу тока называют током короткого замыкания:
У источников с малым значением r (например, у свинцовых аккумуляторов r = 0,1 - 0,01 Ом) сила тока короткого замыкания очень велика. Особенно опасно короткое замыкание в осветительных сетях, питаемых от подстанций (ε > 100 В), Ikz может достигнуть тысячи ампер. Чтобы избежать пожаров, в такие цепи включают предохранители.
Запишем закон Ома для полной цепи в случае последовательного и параллельного соединения источников тока в батарею. При последовательном соединении источников "-" одного источника соединяется с "+" второго, "-" второго с "+" третьего и т.д. (рис. 3, а). Если ε1 = ε2 = ε3 а r1 = r2 = r3 то εb = 3ε1, rb = 3r1. В этом случае закон Ома для полной цепи имеет вид\[~I = \frac{\varepsilon_b}{R + r_b} = \frac{3 \varepsilon_1}{R + 3r_1}\], или для n одинаковых источников \(~I = \frac{n \varepsilon_1}{R + nr_1}\).
Последовательное соединение применяют в том случае, когда внешнее сопротивление \(~R \gg nr_1\), тогда \(~I = \frac{n \varepsilon_1}{R}\) и батарея может дать силу тока, в n раз большую, чем сила тока от одного источника.
При параллельном соединении источников тока все "+" источников соединены вместе и "-" источников — также вместе (рис. 3, б). В этом случае
Откуда \(~I = \frac{\varepsilon_1}{R + \frac{r_1}{3}}\) .
Для n одинаковых источников \(~I = \frac{\varepsilon_1}{R + \frac{r_1}{n}}\) .
Параллельное соединение источников тока применяют тогда, когда нужно получить источник тока с малым внутренним сопротивлением или когда для нормальной работы потребителя электроэнергии в цепи должен протекать ток. больший, чем допустимый ток одного источника.
Параллельное соединение выгодно, когда R невелико по сравнению с r.
Иногда применяют смешанное соединение источников.
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 262-264.