А. Продольные волны
Поперечные и продольные волны
Различают продольные и поперечные волны. Волна называется поперечной, если частицы среды совершают колебания в направлении, перпендикулярном к направлению распространения волны (рис. 15.3). Поперечная волна распространяется, например, вдоль натянутого горизонтального резинового шнура, один из концов которого закреплен, а другой приведен в вертикальное колебательное движение.
Рассмотрим подробнее процесс образования поперечных волн. Возьмем в качестве модели реального шнура цепочку шариков (материальных точек), связанных друг с другом упругими силами (рис. 15.4, а). На рисунке 15.4 изображен процесс распространения поперечной волны и показаны положения шариков через последовательные промежутки времени, равные четверти периода.
В начальный момент времени (t0 = 0) все точки находятся в состоянии равновесия (рис. 15.4, а). Затем вызываем возмущение, отклонив точку 1 от положения равновесия на величину А и 1-я точка начинает колебаться, 2-я точка, упруго связанная с 1-й, приходит в колебательное движение несколько позже, 3-я — еще позже и т.д. Через четверть периода колебания \(\Bigr( t_2 = \frac{T}{4} \Bigl)\) распространятся до 4-й точки, 1-я точка успеет отклониться от своего положения равновесия на максимальное расстояние, равное амплитуде колебаний А (рис. 15.4, б). Через полпериода 1-я точка, двигаясь вниз, возвратится в положение равновесия, 4-я отклонилась от положения равновесия на расстояние, равное амплитуде колебаний А (рис. 15.4, в), волна распространилась до 7-й точки и т.д.
К моменту времени t5 = T 1-я точка, совершив полное колебание, проходит через положение равновесия, а колебательное движение распространится до 13-й точки (рис. 15.4, д). Все точки от 1-й до 13-й расположены так, что образуют полную волну, состоящую из впадины и горба.
Волна называется продольной, если частицы среды совершают колебания в направлении распространения волны (рис. 15.5).
Продольную волну можно наблюдать на длинной мягкой пружине большого диаметра. Ударив по одному из концов пружины, можно заметить, как по пружине будут распространяться последовательные сгущения и разрежения ее витков, бегущие друг за другом. На рисунке 15.6 точками показано положение витков пружины в состоянии покоя, а затем положения витков пружины через последовательные промежутки времени, равные четверти периода.
Таким образом, продольная волна в рассматриваемом случае представляет собой чередующиеся сгущения (Сг) и разрежения (Раз) витков пружины.
Вид волны зависит от вида деформации среды. Продольные волны обусловлены деформацией сжатия — растяжения, поперечные волны — деформацией сдвига. Поэтому в газах и жидкостях, в которых упругие силы возникают толь-ко при сжатии, распространение поперечных волн невозможно. В твердых телах упругие силы возникают и при стажии (растяжении) и при сдвиге, поэтому в них возможно распространение как продольных, так и поперечных волн.
Как показывают рисунки 15.4 и 15.6, и в поперечной и в продольной волнах каждая точка среды колеблется около своего положения равновесия и смещается от него не более чем на амплитуду, а состояние дефомации среды передается от одной точки среды к другой. Важное отличие упругих волн в среде от любого другого упорядоченного движения ее частиц заключается в том, что распространение волн не связано с переносом вещества среды.
Следовательно, при распространении волн происходит перенос энергии упругой деформации и импульса без переноса вещества. Энергия волны в упругой среде состоит из кинетической энергии совершающих колебания частиц и из потенциальной энергии упругой деформации среды.
Рассмотрим, например, продольную волну в упругой пружине. В фиксированный момент времени кинетическая энергия распределена по пружине неравномерно, так как одни витки пружины в этот момент покоятся, а другие, напротив, движутся с максимальной скоростью. То же самое справедливо и для потенциальной энергии, так как в этот момент какие-то элементы пружины не деформированы, другие же деформированы максимально. Поэтому при рассмотрении энергии волны вводят такую характеристику, как плотность \(\omega\) кинетической и потенциальной энергий (\(\omega=\frac{W}{V} \)— энергия, приходящаяся на единицу объема). Плотность энергии волны в каждой точке среды не остается постоянной, а периодически изменяется при прохождении волны: энергия распространяется вместе с волной.
Любой источник волн обладает энергией W, которую волна при своем распространении передает частицам среды.
Интенсивность волны I показывает, какую энергию в среднем переносит волна за единицу времени через единицу площади поверхности, перпендикулярной к направлению распространения волны\[I = \frac{W}{tS}.\]
В СИ единицей интенсивности волны является ватт на квадратный метр Дж/(м2 \(\cdot\) c) = Вт/м2
Энергия и интенсивность волны прямо пропорциональны квадрату ее амплитуды \(~I \sim A^2\).
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 425-428.