SA. Полупроводники

Материал из PhysBook
Перейти к: навигация, поиск

Содержание

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение по электропроводности (или по удельному сопротивлению) между проводниками и диэлектриками. Однако это деление всех веществ по их свойству электропроводности является условным, так как под действием ряда причин (примеси, облучение, нагревание) электропроводность и удельное сопротивление у многих веществ весьма значительно изменяются, особенно у полупроводников.

В связи с этим полупроводники от металлов отличают по целому ряду признаков:

1. удельное сопротивление у полупроводников при обычных условиях гораздо больше, чем у металлов;

2. удельное сопротивление чистых полупроводников уменьшается с ростом температуры (у металлов оно растет);

3. при освещении полупроводников их сопротивление значительно уменьшается (на сопротивление металлов свет почти не влияет):

4. ничтожное количество примесей оказывает сильное влияние на сопротивление полупроводников.

К полупроводникам принадлежат 12 химических элементов в средней части таблицы Менделеева (рис. 1) — В, С, Si, Ρ, S, Ge, As, Se, Sn, Sb, Те, I, соединения элементов третьей группы с элементами пятой группы, многие оксиды и сульфиды металлов, ряд других химических соединений, некоторые органические вещества. Наибольшее применение для науки и техники имеют германий Ge и кремний Si.

Рис. 1

Полупроводники могут быть чистыми и с примесями. Соответственно различают собственную и примесную проводимость полупроводников. Примеси в свою очередь делят на донорные и акцепторные.

Собственная электрическая проводимость

Для понимания механизма электрической проводимости в полупроводниках рассмотрим строение полупроводниковых кристаллов и природу связей, удерживающих атомы кристалла друг возле друга. Кристаллы германия и других полупроводников имеют атомную кристаллическую решетку (рис. 2).

Рис. 2

Плоская схема структуры германия показана на рисунке 3.

Рис. 3

Германий — четырехвалентный элемент, во внешней оболочке атома есть четыре электрона, слабее связанных с ядром, чем остальные. Число ближайших соседей каждого атома германия также равно 4. Четыре валентных электрона каждого атома германия связаны с такими же электронами соседних атомов химическими парноэлектронными (ковалентными) связями. В образовании этой связи от каждого атома участвует по одному валентному электрону, которые отщепляются от атомов (коллективизируются кристаллом) и при своем движении большую часть времени проводят в пространстве между соседними атомами. Их отрицательный заряд удерживает положительные ионы германия друг возле друга. Такого рода связь условно может быть изображена двумя линиями, соединяющими ядра (см. рис. 3).

Но коллективизированная пара электронов принадлежит не только двум атомам. Каждый атом образует четыре связи с соседними, а данный валентный электрон может двигаться по любой из них (рис. 4). Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла. Коллективизированные валентные электроны принадлежат всему кристаллу.

Рис. 4

Ковалентные связи германия достаточно прочны и при низких температурах не разрываются. Поэтому германий при низкой температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны прочно привязаны к кристаллической решетке, и внешнее электрическое поле не оказывает заметного влияния на их движение. Аналогичное строение имеет и кристалл кремния.

Электропроводимость химически чистого полупроводника возможна в том случае, когда ковалентные связи в кристаллах разрываются и появляются свободные электроны.

Дополнительная энергия, которая должна быть затрачена, чтобы разорвать ковалентную связь и сделать электрон свободным, называется энергией активации.

Получить эту энергию электроны могут при нагревании кристалла, при облучении его высокочастотными электромагнитными волнами и т.д.

Как только электрон, приобретя необходимую энергию, уходит с локализованной связи, на ней образуется вакансия. Эту вакансию может легко заполнить электрон с соседней связи, на которой, таким образом, также образуется вакансия. Таким образом, благодаря перемещению электронов связи происходит перемещение вакансий по всему кристаллу. Эта вакансия ведет себя точно так же, как и свободный электрон — она свободно перемещается по объему полупроводника. Более того, учитывая, что и полупроводник в целом, и каждый его атом при не нарушенных ковалентных связях электрически нейтральны, можно сказать, что уход электрона со связи и образование вакансии фактически эквивалентно появлению на этой связи избыточного положительного заряда. Поэтому образовавшуюся вакансию можно формально рассматривать как носитель положительного заряда, который называют дыркой (рис. 5).

Рис. 5

Таким образом, уход электрона с локализованной связи порождает пару свободных носителей заряда — электрон и дырку. Их концентрация в чистом полупроводнике одинакова. При комнатной температуре концентрация свободных носителей в чистых полупроводниках невелика, примерно в 109 ÷ 1010 раз меньше концентрации атомов, но при этом она быстро возрастает с увеличением температуры.

  • Сравните с металлами: там концентрация свободных электронов примерно равна концентрации атомов.

В отсутствие внешнего электрического поля эти свободные электроны и дырки движутся в кристалле полупроводника хаотически.

Во внешнем электрическом поле электроны перемещаются в сторону, противоположную направлению напряженности электрического поля. Положительные дырки перемещаются в направлении напряженности электрического поля (рис. 6). Процесс перемещения электронов и дырок во внешнем поле происходит по всему объему полупроводника.

Рис. 6

Общая удельная электропроводность полупроводника складывается из дырочной и электронной проводимостей. При этом у чистых полупроводников число электронов проводимости всегда равно числу дырок. Поэтому говорят, что чистые полупроводники обладают электронно-дырочной проводимостью, или собственной проводимостью.

С повышением температуры возрастает число разрывов ковалентных связей и увеличивается количество свободных электронов и дырок в кристаллах чистых полупроводников, а, следовательно, возрастает удельная электропроводность и уменьшается удельное сопротивление чистых полупроводников. График зависимости удельного сопротивления чистого полупроводника от температуры приведен на рис. 7.

Рис. 7

Кроме нагревания, разрыв ковалентных связей и, как следствие, возникновение собственной проводимости полупроводников и уменьшение удельного сопротивления могут быть вызваны освещением (фотопроводимость полупроводника), а также действием сильных электрических полей.

Примесная проводимость полупроводников

Проводимость полупроводников увеличивается с введением примесей, когда наряду с собственной проводимостью возникает дополнительная примесная проводимость.

Примесной проводимостью полупроводников называется проводимость, обусловленная наличием примесей в полупроводнике.

Примесными центрами могут быть:

1. атомы или ионы химических элементов, внедренные в решетку полупроводника;

2. избыточные атомы или ионы, внедренные в междоузлия решетки;

3. различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.

Изменяя концентрацию примесей, можно значительно увеличивать число носителей зарядов того или иного знака и создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.

Примеси можно разделить на донорные (отдающие) и акцепторные (принимающие).

Донорная примесь

  • От латинского «donare» — давать, жертвовать.

Рассмотрим механизм электропроводности полупроводника с донорной пятивалентной примесью мышьяка As, которую вводят в кристалл, например, кремния. Пятивалентный атом мышьяка отдает четыре валентных электрона на образование ковалентных связей, а пятый электрон оказывается незанятым в этих связях (рис. 8).

Рис. 8

Энергия отрыва (энергия ионизации) пятого валентного электрона мышьяка в кремнии равна 0,05 эВ = 0,08⋅10-19 Дж, что в 20 раз меньше энергии отрыва электрона от атома кремния. Поэтому уже при комнатной температуре почти все атомы мышьяка теряют один из своих электронов и становятся положительными ионами. Положительные ионы мышьяка не могут захватить электроны соседних атомов, так как все четыре связи у них уже укомплектованы электронами. В этом случае перемещения электронной вакансии — «дырки» не происходит и дырочная проводимость очень мала, т.е. практически отсутствует.

Донорные примеси — это примеси легко отдающие электроны и, следовательно, увеличивающие число свободных электронов. При наличии электрического поля свободные электроны приходят в упорядоченное движение в кристалле полупроводника, и в нем возникает электронная примесная проводимость. В итоге мы получаем полупроводник с преимущественно электронной проводимостью, называемый полупроводником n-типа. (От лат. negativus — отрицательный).

Поскольку в полупроводнике n-типа число электронов значительно больше числа дырок, то электроны являются основными носителями заряда, а дырки — неосновными.

Акцепторная примесь

  • От латинского «acceptor» — приемщик.

В случае акцепторной примеси, например, трехвалентного индия In атом примеси может дать свои три электрона для осуществления ковалентной связи только с тремя соседними атомами кремния, а одного электрона «недостает» (рис. 9). Один из электронов соседних атомов кремния может заполнить эту связь, тогда атом In станет неподвижным отрицательным ионом, а на месте ушедшего от одного из атомов кремния электрона образуется дырка. Акцепторные примеси, захватывая электроны и создавая тем самым подвижные дырки, не увеличивают при этом числа электронов проводимости. Основные носители заряда в полупроводнике с акцепторной примесью — дырки, а неосновные — электроны.

Рис. 9

Акцепторные примеси — это примеси, обеспечивающие дырочную проводимость.

Полупроводники, у которых концентрация дырок превышает концентрацию электронов проводимости, называются полупроводниками р-типа (От лат. positivus — положительный.).

Необходимо отметить, что введение примесей в полупроводники, как и в любых металлах, нарушает строение кристаллической решетки и затрудняет движение электронов. Однако сопротивление не увеличивается из-за того, что увеличение концентрации носителей зарядов значительно уменьшает сопротивление. Так, введение примеси бора в количестве 1 атом на сто тысяч атомов кремния уменьшает удельное электрическое сопротивление кремния приблизительно в тысячу раз, а примесь одного атома индия на 108 - 109 атомов германия уменьшает удельное электрическое сопротивление германия в миллионы раз.

Если в полупроводник одновременно вводятся и донорные, и акцепторные примеси, то характер проводимости полупроводника (n- или p-тип) определяется примесью с более высокой концентрацией носителей заряда.

Электронно-дырочный переход

Электронно-дырочный переход (сокращенно р-n-переход) возникает в полупроводниковом кристалле, имеющем одновременно области с n-типа (содержит донорные примеси) и р-типа (с акцепторными примесями) прово-димостями на границе между этими областями.

Допустим, у нас есть кристалл, в котором слева находится область полупроводника с дырочной (p-типа), а справа — с электронной (n-типа) проводимостью (рис. 10). Благодаря тепловому движению при образовании контакта электроны из полупроводника n-типа будут диффундировать в область р-типа. При этом в области n-типа останется нескомпенсированный положительный ион донора. Перейдя в область с дырочной проводимостью, электрон очень быстро рекомбинирует с дыркой, при этом в области р-типа образуется нескомпенсированный ион акцептора.

Рис. 10

Аналогично электронам дырки из области р-типа диффундируют в электронную область, оставляя в дырочной области нескомпенсированный отрицательно заряженный ион акцептора. Перейдя в электронную область, дырка рекомбинирует с электроном. В результате этого в электронной области образуется нескомпенсированный положительный ион донора.

В результате диффузии на границе между этими областями образуется двойной электрический слой разноименно заряженных ионов, толщина l которого не превышает долей микрометра.

Между слоями ионов возникает электрическое поле с напряженностью Ei. Электрическое поле электронно-дырочного перехода (р-n-переход) препятствует дальнейшему переходу электронов и дырок через границу раздела двух полупроводников. Запирающий слой имеет повышенное сопротивление по сравнению с остальными объемами полупроводников.

Внешнее электрическое поле с напряженностью E влияет на сопротивление запирающего электрического поля. Если n-полупроводник подключен к отрицательному полюсу источника, а плюс источника соединен с p-полупроводником, то под действием электрического поля электроны в n-полупроводнике и дырки в p-полупроводнике будут двигаться навстречу друг другу к границе раздела полупроводников (рис. 11). Электроны, переходя границу, «заполняют» дырки. При таком прямом направлении внешнего электрического поля толщина запирающего слоя и его сопротивление непрерывно уменьшаются. В этом направлении электрический ток проходит через р-n-переход.

Рис. 11

Рассмотренное направление p-n-перехода называют прямым. Зависимость силы тока от напряжения, т.е. вольт-амперная характеристика прямого перехода, изображена на рис. 12 сплошной линией.

Рис. 12

Если n-полупроводник соединен с положительным полюсом источника, а p-полупроводник — с отрицательным, то электроны в n-полупроводнике и дырки в p-полупроводнике под действием электрического поля будут перемещаться от границы раздела в противоположные стороны (рис. 13). Это приводит к утолщению запирающего слоя и увеличению его сопротивления. Направление внешнего электрического поля, расширяющее запирающий слой, называется запирающим (обратным). При таком направлении внешнего поля электрический ток основных носителей заряда через контакт двух п- и p-полупроводников не проходит.

Рис. 13

Ток через p-n-переход теперь обусловлен электронами, которые есть в полупроводнике p-типа, и дырками из полупроводника n-типа. Но неосновными носителей заряда очень мало, поэтому проводимость перехода оказывается незначительной, а его сопротивление — большим. Рассмотренное направление p-n-перехода называют обратным, его вольт-амперная характеристика изображена на рис. 12 штриховой линией.

Обратите внимание, что масштаб измерения силы тока при прямом и обратном переходах отличаются в тысячу раз.

Заметим, что при определенном напряжении, приложенном в обратном направлении, происходит пробой (т.е. разрушение) p-n-перехода.

Полупроводниковые приборы

Термисторы

Электрическое сопротивление полупроводников в значительной степени зависит от температуры. Это свойство используют для измерения температуры по силе тока в цепи с полупроводником. Такие приборы называют терморезисторами или термисторами. Полупроводниковое вещество помещается в металлический защитный чехол, в котором имеются изолированные выводы для включения терморезистора в электрическую цепь.

Изменение сопротивления терморезисторов при нагревании или охлаждении позволяет использовать их в приборах для измерения температуры, для поддержания постоянной температуры в автоматических устройствах — в закрытых камерах-термостатах, для обеспечения противопожарной сигнализации и т.д. Существуют термисторы для измерения как очень высоких (Т ≈ 1300 К), так и очень низких (Т ≈ 4 - 80 К) температур.

Схематическое изображение (рис. а) и фотография (рис. б) термистора приведено на рисунке 14.

Рис. 14

Фоторезисторы

Электрическая проводимость полупроводников повышается не только при нагревании, но и при освещении. Электрическая проводимость возрастает вследствие разрыва связей и образования свободных электронов и дырок за счет энергии света, падающего на полупроводник.

Приборы, в которых учитывается зависимость электрической проводимости полупроводников от освещения, называют фоторезисторами.

Материалами для изготовления фоторезисторов служат соединения типа CdS, CdSe, PbS и ряд других.

Миниатюрность и высокая чувствительность фоторезисторов позволяют использовать их для регистрации и измерения слабых световых потоков. С помощью фоторезисторов определяют качество поверхностей, контролируют размеры изделий и т.д.

Схематическое изображение (рис. а) и фотография (рис. б) фоторезистора приведено на рисунке 15.

Рис. 15

Полупроводниковый диод

Способность p-n-перехода пропускать ток в одном направлении используется в полупроводниковых приборах, называемых диодами.

Полупроводниковые диоды изготавливают из германия, кремния, селена и других веществ.

Для предотвращения вредных воздействий воздуха и света кристалл германия помещают в герметический металлический корпус. Полупроводниковые диоды являются основными элементами выпрямителей переменного тока (если точнее, служат для преобразования переменного тока в пульсирующий ток постоянного направления.)

Схематическое изображение (рис. а) и фотография (рис. б) полупроводникового диода приведено на рисунке 16.

Рис. 16

Светодиоды

Светодиод или светоизлучающий диод — полупроводниковый прибор с p-n-переходом, создающий оптическое излучение при пропускании через него электрического тока.

Излучаемый свет лежит в узком диапазоне спектра, его спектральные характеристики зависят в том числе от химического состава использованных в нём полупроводников.

Применение светодиодов: в освещении, в качестве индикаторов (индикатор включения на панели прибора, буквенно-цифровое табло), как источник света в фонарях и светофорах, в качестве источников оптического излучения (пульты ДУ, светотелефоны), в подсветке ЖК-экранов (мобильные телефоны, мониторы, телевизоры) и т. д.

Схематическое изображение (рис. а) и фотография (рис. б) светодиода приведено на рисунке 17.

Рис. 17

См. так же

  1. Wikipedia: Диод
  2. Wikipedia: Светодиоды
  3. Wikipedia: Термистор
  4. Wikipedia: Фоторезистор

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 300-308.
  2. Буров Л.И., Стрельченя В.Μ. Физика от А до Я: учащимся, абитуриентам, репетиторам. — Мн.: Парадокс, 2000. — С. 219-228.
  3. Мякишев Г. Я. Физика: Электродинамика. 10 – 11 кл.: учебник для углубленного изучения физики/ Г.Я. Мякишев, А.З. Синяков, Б.А. Слободсков. — М.: Дрофа, 2005. — С. 309-320.
  4. Яворский Б. М., Селезнев Ю. А. Справочное руководство по физике для поступающих в вузы и самообразования. — М.: Наука, 1984. — С. 165-169.
Персональные инструменты
Пространства имён

Варианты
Действия
Учебники
Журнал "Квант"
Разделы физики
Общие
Инструменты