Реферат. Корпускулярно-волновой дуализм

Материал из PhysBook

Перейти к: навигация, поиск

Волновые и корпускулярные свойства света

Первые представления древних ученых о том, что такое свет, были весьма наивны. Существовало несколько точек зрения. Одни считали, что из глаз выходят особые тонкие щупальца и зрительные впечатления возникают при ощупывании ими предметов. Эта точка зрения имела большое число последователей, среди которых был Эвклид, Птолемей и многие другие ученые и философы. Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались Лукреций, Демокрит.

В 17 веке почти одновременно возникли и начали развиваться две совершенно разные теории о том, что такое свет и какова его природа. Одна из этих теорий связана с именем И.Ньютона, а другая – с именем Х.Гюйгенса.

И. Ньютон придерживался так называемой корпускулярной теории света, согласно которой свет – это поток частиц, идущих от источника во все стороны (перенос вещества).

Согласно же представлениям Х.Гюйгенса, свет – это поток волн, распространяющихся в особой, гипотетической среде – эфире, заполняющем все пространство и проникающем внутрь всех тел.

Обе теории длительное время существовали параллельно. Ни одна из них не могла одержать решающей победы. Лишь авторитет И.Ньютона заставлял большинство ученых отдавать предпочтение корпускулярной теории. Известные в то время из опыта законы распространения света более или менее успешно объяснялись обеими теориями.

На основе корпускулярной теории было трудно объяснить, почему световые пучки, пересекаясь в пространстве, никак не действуют друг на друга. Ведь световые частицы должны сталкиваться и рассеиваться.

Волновая же теория это легко объясняла. Волны, например, на поверхности воды, свободно проходят друг сквозь друга, не оказывая взаимного влияния.

Однако прямолинейное распространение света, приводящее к образованию за предметами резких теней, трудно объяснить, исходя из волновой теории. При корпускулярной же теории прямолинейное распространение света является просто следствием закона инерции.

Такое неопределенное положение относительно природы света сохранялось до начала XIX века, когда были открыты явления дифракции света (огибания светом препятствий) и интерференция света (усиление или ослабление освещенности при наложении световых пучков друг на друга). Эти явления присуще исключительно волновому движению. Объяснить их с помощью корпускулярной теории нельзя. К волновым свойствам света можно отнести также дисперсию света, поляризацию. Поэтому казалось, что волновая теория одержала окончательную и полную победу.

Такая уверенность особенно окрепла, когда Д.Максвелл во второй половине XIX века показал, что свет есть частный случай электромагнитных волн. Работами Д.Максвелла были заложены основы электромагнитной теории света. После экспериментального обнаружения электромагнитных волн Г.Герцем никаких сомнений в том, что при распространении свет ведет себя как волна, не осталось. Однако в начале XX века представления о природе света начали корен-ным образом изменяться. Неожиданно выяснилось, что отвергнутая корпускулярная теория все же имеет отношение к действительности. При излучении и поглощении свет ведет себя подобно потоку частиц. Волновыми свойствами света нельзя было объяснить закономерности фотоэффекта.

Возникла необычная ситуация. Явления интерференции, дифракции, поляризации света от обычных источников света неопровержимо свидетельствует о волновых свойствах света. Однако и в этих явлениях при соответствующих условиях свет проявляет корпускулярные свойства. В свою очередь, закономерности теплового излучения тел, фотоэлектрического эффекта и других неоспоримо свидетельствуют, что свет ведет себя не как непрерывная, протяженная волна, а как поток «сгустков» (порций, квантов) энергии, т.е. как поток частиц – фотонов.

Таким образом, свет сочетает в себе непрерывность волн и дискретность частиц. Если учтем, что фотоны существуют только при движении (со скоростью с, то приходим к выводу, что свету одновременно присущи как волновые, так и корпускулярные свойства. Но в некоторых явлениях при определенных условиях основную роль играют или волновые, или корпускулярные свойства и свет можно рассматривать или как волну, или как частицы (корпускулы).

Одновременное наличие у объектов волновых и корпускулярных свойств получило название корпускулярно-волнового дуализма.


Волновые свойства микрочастиц. Дифракция электронов

В 1923 году французский физик Л. де Бройль выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами.

Согласно де Бройлю, с каждым микрообъектом связаны, с одной стороны, корпускулярные характеристики – энергия E и импульс p, а с другой стороны, волновые характеристики – частота ν и длина волны λ.

Корпускулярные и волновые характеристики микрообъектов связаны такими же количественными соотношениями, как и у фотона:

~E = h \nu ; p = \frac{h \nu}{c} = \frac{h}{\lambda}.

Гипотеза де Бройля постулировала эти соотношения для всех микрочастиц, в том числе и для таких, которые обладают массой m. Любой частице, обладающей импульсом, сопоставлялся волновой процесс с длиной волны ~\lambda = \frac{h}{p} . Для частиц, имеющих массу,

~\lambda = \frac{h}{p} = \frac{h \cdot \sqrt{1 - \frac{\upsilon^2}{c^2}}}{m \cdot \upsilon}.

В нерелятивистском приближении (υ « c)

~\lambda = \frac{h}{m \cdot \upsilon}.

Гипотеза де Бройля основывалась на соображениях симметрии свойств материи и не имела в то время опытного подтверждения. Но она явилась мощным революционным толчком к развитию новых представлений о природе материальных объектов. В течение нескольких лет целый ряд выдающихся физиков XX века – В. Гейзенберг, Э. Шредингер, П. Дирак, Н. Бор и другие – разработали теоретические основы новой науки, которая была названа квантовой механикой.

Первое экспериментальное подтверждение гипотезы де Бройля было получено в 1927 году американскими физиками К. Девиссоном и Л. Джермером. Они обнаружили, что пучок электронов, рассеивающийся на кристалле никеля, дает отчетливую дифракционную картину, подобную той, которая возникает при рассеянии на кристалле коротковолнового рентгеновского излучения. В этих экспериментах кристалл играл роль естественной дифракционной решетки. По положению дифракционных максимумов была определена длина волны электронного пучка, которая оказалась в полном соответствии с формулой де Бройля.

В следующем 1928 году английский физик Дж. Томсон (сын Дж. Томсона, открывшего за 30 лет до этого электрон) получил новое подтверждение гипотезы де Бройля. В своих экспериментах Томсон наблюдал дифракционную картину, возникающую при прохождении пучка электронов через тонкую поликристаллическую фольгу из золота. На установленной за фольгой фотопластинке отчетливо наблюдались концентрические светлые и темные кольца, радиусы которых изменялись с изменением скорости электронов (т. е. длины волны) согласно де Бройлю.

В последующие годы опыт Дж. Томсона был многократно повторен с неизменным результатом, в том числе при условиях, когда поток электронов был настолько слабым, что через прибор единовременно могла проходить только одна частица (В. А. Фабрикант, 1948 г.). Таким образом, было экспериментально доказано, что волновые свойства присущи не только большой совокупности электронов, но и каждому электрону в отдельности.

Впоследствии дифракционные явления были обнаружены также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что это универсальное явление природы, общее свойство материи. Следовательно, волновые свойства должны быть присущи и макроскопическим телам. Однако вследствие большой массы макроскопических тел их волновые свойства не могут быть обнаружены экспериментально. Например, пылинке массой 10-9 г, движущийся со скоростью 0,5 м/с соответствует волна де Бройля с длиной волны порядка 10-21 м, т. е. приблизительно на 11 порядков меньше размеров атомов. Такая длина волны лежит за пределами доступной наблюдению области. Этот пример показывает, что макроскопические тела могут проявлять только корпускулярные свойства.

Таким образом, подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме коренным образом изменила представления о свойствах микрообъектов.

Всем микрообъектам присущи и волновые, и корпускулярные свойства, однако, они не являются ни волной, ни частицей в классическом понимании. Разные свойства микрообъектов не проявляются одновременно, они дополняют друг друга, только их совокупность характеризует микрообъект полностью. В этом заключается сформулированный знаменитым датским физиком Н. Бором принцип дополнительности. Можно условно сказать, что микрообъекты распространяются как волны, а обмениваются энергией как частицы.

С точки зрения волновой теории, максимумы в картине дифракции электронов соответствуют наибольшей интенсивности волн де Бройля. В области максимумов, зарегистрированных на фотопластинке, попадает большое число электронов. Но процесс попадания электронов в различные места на фотопластинке не индивидуален. Принципиально невозможно предсказать, куда попадет очередной электрон после рассеяния, существует лишь определенная вероятность попадания электрона в то или иное место. Таким образом, описание состояния микрообъекта и его поведения может быть дано только на основе теории вероятности.

Волны де Бройля не являются электромагнитными волнами и не имеют аналогии среди всех видов волн, изучаемых в классической физике, т.к. они не испускаются какими-либо источниками волн и не имеют отношения к распространению какого-либо поля, например электромагнитного или какого-либо другого. Они связаны с любой движущейся частицей вне зависимости от того, является ли она электрически заряженной или нейтральной.

Составители

Киреев Н. (11 «В» МГОЛ № 1, 2008)